
Physics of Fluids ARTICLE scitation.org/journal/phf

Decaying compressible turbulence with thermal
non-equilibrium

Cite as: Phys. Fluids 31, 015103 (2019); doi: 10.1063/1.5080369
Submitted: 7 November 2018 • Accepted: 18 December 2018 •
Published Online: 10 January 2019

Sualeh Khurshid and Diego A. Donzisa)

AFFILIATIONS
Department of Aerospace Engineering, Texas A&M University, College Station, Texas 77843-3141, USA

a)donzis@tamu.edu

ABSTRACT
The interaction of decaying turbulence with thermal non-equilibrium (TNE) is studied using direct numerical simulations. The
focus is on energy exchanges and decay rates in decaying flows with initial vibrational excitation. A key finding is the identification
of different regimes in the interaction and the nondimensional parameter (β) that controls it. The latter accounts for the degree
of initial TNE as well as the ratio of timescales of turbulence and vibrational relaxation. For β < 1, TNE is essentially frozen and
turbulence is largely unaffected by the decay of vibrational energy. For β > 1, TNE relaxation is relatively fast and produces an
increase in translational–rotational energy, which, through changes in transport coefficients, leads to a temporary increase in
dissipation leading to faster turbulence decay rates. Theoretical arguments are put forth to determine the asymptotic limits of
this effect. TNE relaxation is also affected by turbulent fluctuations in unexpected ways. For example, although initial conditions
are always vibrationally hot, the flow may undergo vibrationally cold transients, which are explained through simple models. The
results presented here help explain disagreement between previous experimental and numerical data.
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I. INTRODUCTION

Turbulence is ubiquitous in a wide range of natural and
engineering phenomena, such as formation of galaxies,1,2 mix-
ing of fuel and oxidizer in engines,3 and numerous processes
in the atmosphere.4 In engineering applications, modeling and
control of turbulence is of paramount interest. For example,
development of planetary re-entry systems and future super-
sonic aircraft depend critically on the understanding of hyper-
sonic flows especially under turbulent conditions.5,6 In many
of these systems, turbulence can be studied under the so-
called continuum assumption in thermal equilibrium, where
the molecular structure of the gas is not incorporated directly
into the formulation. This is an appropriate assumption for
low-speed flows and has been invoked widely to study the
fundamental aspects of turbulence processes. However, high-
speed flows are characterized by very high temperatures7

at which molecular energy modes, such as vibrational, rota-
tional, or electronic modes, may not be in thermodynamic
equilibrium and need to be accounted for to define the ther-
modynamic state of the gas.7–11 It is therefore important to
account for and characterize these processes in high-speed

compressible flows. A substantial body of literature exists for
laminar flows under those conditions.7,8,12 However, studies
in the case of turbulent flows are limited and thus studying
turbulent flows is the objective of the present work.

Rapid changes in the thermodynamic state of fluid ele-
ments may be induced by natural means such as shocks7

and turbulent fluctuations13–15 or induced deliberately in
the laboratory with, for example, laser excitation.16 If these
changes are fast enough, one or more modes may be out of
equilibrium, in which case the gas is said to be in thermal
non-equilibrium (TNE). Relaxation toward equilibrium of dif-
ferent modes is achieved through molecular collisions with
varying degree of efficiency. Rotational modes only require
order 10-100 collisions while vibrational modes may require
more than three orders of magnitude more collisions to
equilibrate.12 In other words, rotational modes relax toward
equilibrium faster than vibrational modes. In fact, in many
situations rotational modes can be assumed to be in equilib-
rium, but vibrational modes relax at timescales comparable
to hydrodynamic processes in the flow and can thus have
profound effects on the flow dynamics.
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There are several studies that highlight this strong
interaction between hydrodynamic and TNE processes.
Bertolotti,17 for example, studied the effect of thermal non-
equilibrium on the stability of boundary layers and found
that both rotational and vibrational non-equilibrium have an
effect. Rotational non-equilibrium was observed to dampen
high-frequency instabilities and vibrational non-equilibrium
affected the growth of disturbances. However this, as most
other studies, investigated laminar flows.7,8 There are only
a few studies on the interaction between TNE and tur-
bulence.13–16 It is thus not surprising that the general
understanding of these flows is poor in terms of governing
parameters, energy dynamics, and conditions and regimes in
which this interaction could happen. This is a major thrust in
the present work.

It has recently been shown13 that stationary turbulence
can significantly alter the distribution of energy across vibra-
tional, rotational, and translational modes. Furthermore, com-
plete relaxation of TNE is never achieved in turbulent flows
though the degree of non-equilibrium may be small depend-
ing on conditions. In the case of decaying flows, however,
in addition to the effects studied in Ref. 13, one has to
account for the time evolution of hydrodynamic and thermo-
dynamic quantities. Liao, Peng, and Luo18 studied the effect of
rotational non-equilibrium on decaying isotropic turbulence.
They observed that relaxation of rotational non-equilibrium
weakens compressibility after a short initial time. Rotational
non-equilibrium was also observed to affect dissipation. The
authors noted that the effect on compressibility is more signif-
icant for flows with high Mach numbers, which are generally
characterized by stronger compressibility levels. Experimen-
tally, it has also been found that vibrational non-equilibrium
has a clear effect on the decay of turbulence. In particular,
Fuller et al.16 found that the decay is faster when the degree
of initial non-equilibrium is increased. This seems to be dif-
ferent from the conclusion arrived at by Neville et al.19 who
found a negligible effect on the decay of isotropic turbulence
in direct numerical simulations. They also reported a damping
of thermodynamic fluctuations in the presence of vibrational
non-equilibrium. As we show below, however, the observa-
tions and disagreement from both studies can be explained by
the results presented here.

In this article, we study decaying isotropic turbulence in
the presence of vibrational TNE to characterize and under-
stand the observed changes in decay rates. For this, we use
well-resolved direct numerical simulations (DNS) at a range of
parameters characterizing the TNE, in particular, the degree
of initial non-equilibrium and the characteristic relaxation
time both of which depend on the excitation mechanism and
the molecular system considered.

II. GOVERNING EQUATIONS AND DIRECT
NUMERICAL SIMULATIONS

To study the two-way coupling between turbulence
and TNE, we performed and analyzed a large database
of direct numerical simulations (DNS), which resolve all

dynamically relevant spatial and temporal turbulent scales as
well as molecular relaxation processes. The governing equa-
tions expressing conservation of mass and momentum are
given by

∂ρ

∂t
+
∂

∂xi
(ρui) = 0,

∂

∂t
(ρui) +

∂

∂xj
(ρuiuj) = −

∂p
∂xi

+
∂

∂xi
(σij), (1)

where ui is the flow velocity, ρ is the fluid density,
p is the pressure, and σij is the viscous stress ten-
sor, which corresponds to a Newtonian fluid, that is,

σij = µ
(
∂ui
∂xj

+
∂uj
∂xi
− 2

3 δij
∂uk
∂xk

)
. Viscosity, as commonly done in

compressible flows,20,21 follows a power law with temperature
of the form Ta with a = 0.5.

Since translational and rotational energies are assumed
to be in equilibrium,13 we will not differentiate between them
and use e to denote the sum of these two contributions. In the
case of a perfect gas of diatomic molecules, as assumed here,
we have e = (5/2)RT, where R is the gas constant. Conservation
of translational–rotational energy can then be written as

D(ρe)
Dt

= −p
∂ui

∂xi
+
∂

∂xi

(
κ
∂T
∂xi

)
+ σijsij + Qv , (2)

where κ is the thermal conductivity and sij = 1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
is

the strain rate tensor. The Prandtl number is assumed to be
constant, Pr = 0.72, which implies κ to follow the same tem-
perature dependence as viscosity. The last term in Eq. (2), Q3 ,
accounts for the transfers of energy between different modes
of colliding molecules, in this case between translational–
rotational modes and vibrational modes. Correspondingly, the
evolution equation for the vibrational energy takes the famil-
iar advection–diffusion form,22 which is coupled to the system
Eqs. (1) and (2),

D(ρev )
Dt

=
∂

∂xi

(
κv
∂ev
∂xi

)
−Qv , (3)

where ev is the vibrational energy per unit mass and κv is the
corresponding diffusion coefficient for vibrational energy.22

The appearance of Qv in both Eqs. (2) and (3) with opposite
signs highlights the exchange nature of this process, which
does not alter the total energy in the system, but simply
distributes it across internal molecular modes.

In a wide range of applications, the exchange term Qv

can be well approximated by the so-called Landau–Teller
approximation,23,24 which can be written as

Qv = ρ
ev − e∗v
τv

, (4)

where τv is the characteristic relaxation timescale of the
vibrational mode, and e∗v is the equilibrium vibrational energy.
If we use the energy per unit volume instead of per unit mass
(Ev = ρev , E∗v = ρe∗v , E = ρe, etc.), we can simply write Qv =

(Ev − E∗v )/τv . For harmonic oscillators at a translational tem-
perature T, quantum mechanics8 yields an explicit expression

Phys. Fluids 31, 015103 (2019); doi: 10.1063/1.5080369 31, 015103-2

Published under license by AIP Publishing

https://scitation.org/journal/phf


Physics of Fluids ARTICLE scitation.org/journal/phf

TABLE I. Summary of TNE parameters used in the DNS presented here. The initial flow field is at Rλ ≈ 60, E0 = 43.6, and
3.6 × 103 in arbitary units for Mt ∼ 0.4 and 0.1, respectively.

Mt 〈Ev0〉/〈E0〉 (〈Tv0〉 − 〈T0〉)/〈T0〉 Kτ

0.4 0.02 0.941 0.07, 0.34, 6.77, 20.3
0.4 0.14 1.951 0.34, 0.07, 0.68, 2.03, 40.6, 94.8
0.4 0.46 3.423 0.03, 0.07, 6.77, 20.3
0.4 0.92 4.998 0.02, 0.03, 0.68, 2.03, 8.80, 27.1, 94.8
0.4 1.39 6.396 0.02, 0.03, 0.07, 0.17, 0.34, 0.68, 1.02, 2.03,

3.05, 4.06, 5.08, 10.2, 40.6, 64.9, 81.2, 94.8
0.1 1.00 0.62 0.002, 0.005, 0.051, 0.251, 0.401

for e∗v ,

e∗v =
Rθv

eθv /T − 1
, (5)

where θv is the characteristic vibrational temperature, which
depends on the molecular system considered, and R is the gas
constant. The vibrational relaxation timescale, τv , can also be
derived from first principles,22

τv = (cτv1 /p) exp(cτv2 /T)1/3, (6)

where cτv1 and cτv2 are constants that depend on the molecular
system. Some slightly different generalized forms with differ-
ent number of adjustable constants have been put forth,24,25

which appear to describe more accurately the observed vibra-
tional relaxation of a wider range of molecular systems. The
main conclusions presented here, however, do not depend on
these differences. As in previous investigations, the system of
equations is closed with a perfect gas equation of state.13,17

The governing equations are solved in a triply periodic
domain using a hybrid OpenMP/MPI massively parallel imple-
mentation, which has been extensively validated13,21,26 and
has been shown to scale up to very large number of cores.27

The code is based on tenth-order compact differentiation in
space coupled with a low-storage third-order Runge–Kutta in
time. Adequate resolution of quantities of interest is assured
by grid convergence studies, the details of which can be found
in Jagannathan and Donzis.21

Numerical stability is maintained by limiting the time step
size. Typically, this is imposed with a Courant–Friedrichs–Levy
(CFL) condition based on the advective term. In the pres-
ence of TNE, the additional timescale τv could provide stricter
temporal resolution constraints. This will depend on the gas
and thermodynamic state of the flow. In particular, to resolve
TNE relaxation, we require the time step size ∆t to also sat-
isfy ∆t � τvmin, where τvmin is the smallest τv in the domain
at a given time step. Thus, the code dynamically selects the
smallest time step size determined by the standard hydro-
dynamic CFLs (convective and diffusive) and the TNE CFL
(≡∆t/τv ). From convergence studies, we found that proper
capture of the relaxation process is achieved with a TNE CFL
of order 0.01, a value that has been used in all simulations pre-
sented here. The small value of this CFL highlights the addi-
tional cost when resolving all temporal scales in these kinds of
simulations.

The introduction of vibrational non-equilibrium is done
in a manner consistent with the photoexcitation of vibra-
tional modes in the experiments of Ref. 16 to facilitate com-
parisons. The initial condition for the decaying simulations
correspond to fully developed turbulent fields stochastically
forced at the largest scales, with Taylor Reynolds number (Rλ)
of 60 and turbulent Mach number (Mt) of 0.1 and 0.4.20 At t
= 0 forcing is removed and turbulence is allowed to decay
with the simultaneous introduction of additional vibrational
energy. This process increases vibrational energy uniformly
at different predetermined levels above its equilibrium value
in an analogous way to the photoexcitation with lasers or RF
plasma16 in experiments. This approach is also similar to that
used to study rotational non-equilibrium in gas kinetic simula-
tions.18 In this study, the initial vibrational energy, 〈Ev0 〉 (sub-
script zero is used throughout to indicate initial conditions,
and angular brackets 〈·〉 are used to indicate volume averages)
is higher than that at equilibrium, i.e., 〈Ev0 〉 > 〈E

∗
v0
〉, giving rise

to an initially vibrationally hot state. The parameters charac-
terizing the initial state of TNE are the ratio of vibrational and
translational–rotational energy (ξ0) and the initial degree of
non-equilibrium (ξv0) where

ξ0 ≡ 〈Ev0 〉/〈E0〉, ξv0 ≡ 〈Ev0 〉/〈E
∗
v0〉 (7)

and the characteristic vibrational relaxation time, typically
compared with flow timescales, e.g.,

KE ≡ 〈τv0 〉/τE0, Kτ ≡ 〈τv0 〉/τη0, (8)

where τE is the eddy turnover time and τη is the Kolmogorov
timescale. Kτ has been used to characterize turbulence-TNE
interactions in statistically steady states.13

A large DNS database has been created over a range of
flow conditions, which are summarized in Table I. As we will
see below, the specific TNE parameters of the simulations
allow us to understand the different regimes in which the
interaction can be and explain the discrepancies observed
between previous simulations19 and experiments.16

III. ENERGY EXCHANGES
The decay of turbulence is accompanied by energy

exchanges among different modes. Energy is transferred
between the translational–rotational mode e and the vibra-
tional mode ev , through molecular collisions governed by
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Eqs. (2) and (3). In our simulations, the vibrational mode is
initialized with excess energy. Thus, initially energy is trans-
ferred to the translational–rotational mode. For vibrationally
cold flows, energy is transferred from the translational–
rotational mode to the vibrational mode.

The third type of energy present here is the turbulent
kinetic energy (K ≡ 〈ρuiui〉/2 with summation convention
implied), which also interacts with the translational–rotational
mode. The evolution equation for K can be derived by tak-
ing a dot product of the momentum equation [Eq. (1)] with
the velocity vector and averaging. In our flow configuration,
homogeneity results, upon averaging, in vanishing transport
terms leading to

dK
dt
= −〈ε 〉 +

〈
p
∂ui

∂xi

〉
, (9)

where ε = uj∂σij/∂xi is the viscous dissipation, which trans-
fers irreversibly kinetic energy, K to translational–rotational
energy, 〈E〉. Because there are no terms in Eq. (9) that result
in direct energy transfers between K and 〈Ev 〉, the dynam-
ics of vibrational energy can only affect K though an indi-
rect path through the translational–rotational mode. This
effect, as we show later, is indeed an important contribu-
tor to changes in the dynamics of the decay under certain
conditions.

Turbulent kinetic energy also interacts with the
translational–rotational mode by the so-called pressure–
dilatation, the second term on the right hand side of
Eq. (9). This mechanism, which can transfer energy reversibly
between translational–rotational and kinetic energy, has been
found to have a negligible effect in many instances.28,29 We
have also found this to be the case for simulations presented
in this study. A schematic of the energy exchanges is provided
in Fig. 1, which corresponds to the complete system

d
dt
〈Ev 〉 =

〈
E∗v − Ev
τv

〉
, (10)

d
dt
〈E〉 = −

〈
E∗v − Ev
τv

〉
+ 〈ε 〉 −

〈
p
∂ui

∂xi

〉
, (11)

dK
dt
= −〈ε 〉 +

〈
p
∂ui

∂xi

〉
. (12)

FIG. 1. Energy exchanges in decaying turbulence with thermal non-equilibrium.
Arrows indicate direction of energy transfer. The dashed arrow indicates that dis-
sipation, 〈ε 〉, is directly affected by changes in rotational–translational mode 〈E〉
through a temperature-dependent viscosity.

A. Relaxation of mean vibrational energy
When turbulence decays, the exchange terms on the

RHS of Eqs. (10) and (11) will act to decrease the degree
of TNE and restore thermodynamic equilibrium by transfer-
ring energy from vibrational mode to translational–rotational
mode through molecular collisions. The result would be
an increase in 〈T〉 and a corresponding decrease in 〈Tv 〉
(using its standard definition as the temperature that in
Eq. (5) corresponds to a given value of ev ). The evolution
of both 〈T〉 and 〈Tv 〉 is shown in Fig. 2 for some selected
cases. Both temperatures approach the same asymptotic value
at TNE timescales (t ∼ O(〈τv0〉)) as the vibrational mode
approaches equilibrium. Obviously longer times are needed to
achieve equilibrium in flows with slow vibrational relaxation
timescales.

In order to understand the role of turbulence in TNE
decay, we compare the TNE decay process in a simplified
model where no fluctuations are present, that is, an equiva-
lent laminar model with the same mean initial conditions and
properties. Since the mean velocity is zero, and no fluctuations
exist, then TNE relaxation evolves according to

dEv
dt
=

E∗v − Ev
τv

, (13)

dE
dt
= −

E∗v − Ev
τv

. (14)

The above set of equations are highly nonlinear but can be
solved numerically using an explicit forth-order Runge–Kutta
method with variable time stepping for error control. The ini-
tial conditions are same as to those in the turbulent DNS
simulations, i.e., Ev0 = 〈Ev0〉, E∗v0 = 〈E

∗
v0
〉, τv0 = 〈τv0 〉.

The decay of vibrational non-equilibrium is plotted in
Fig. 3 for turbulent flows (solid lines) at different conditions
and the corresponding laminar model (dashed lines). Êv is the

FIG. 2. Decrease in vibrational temperature (〈Tv 〉) accompanied by an increase
in translational–rotational (〈T〉) temperature until both approach the same asymp-
totic equilibrium value. The decay occurs at TNE timescales ∼O(τv ). All curves
correspond to ξ0 = 0.92.

Phys. Fluids 31, 015103 (2019); doi: 10.1063/1.5080369 31, 015103-4

Published under license by AIP Publishing

https://scitation.org/journal/phf


Physics of Fluids ARTICLE scitation.org/journal/phf

FIG. 3. Decay of vibrational energy for turbulent flows (solid) and laminar model
(dashed). (a) Effect of initial vibrational energy ξ0 for fixed Kτ = 0.03. (b) Effect of
relaxation time Kτ for fixed ξ0 = 1.39. Inset shows the behavior near equilibrium.
For the laminar model, all cases decay at τv0 and therefore the dashed lines
overlap with each other.

instantaneous degree of non-equilibrium as a fraction of initial
non-equilibrium, i.e.,

Êv =
〈Ev 〉 − 〈E∗v 〉
〈Ev0〉 − 〈E∗v0〉

. (15)

Clearly TNE relaxation occurs at timescales O ∼ (〈τv0 〉) in both
turbulent flows and the laminar model. We also see that the
decay of TNE is faster for larger initial non-equilibrium energy,
ξ0 = 〈Ev0〉/〈E0〉. This is not surprising given that for large val-
ues of ξ0, a large amount of energy is transferred to 〈E〉, which
creates a large increase in 〈T〉 and thus, a decrease in vibra-
tional relaxation timescale 〈τv 〉 [cf. Eq. (6)]. This effect is clearly
seen in Fig. 6(b).

B. Effect of turbulent fluctuations on TNE properties
While the observations presented in Sec. III A apply to

both laminar and turbulent flows, there are significant dif-
ferences between them near equilibrium, that is, as Êv → 0.

In particular, an interesting observation is that initially vibra-
tionally hot turbulent flows may become vibrationally cold
(Êv < 0) near the equilibrium as seen in the inset of Fig. 3(b).
Note that this does not necessarily correspond to an over-
shoot of the equilibrium value at a spatially local point [i.e.,
Ev (x, t) < E∗v (x, t)] during the relaxation process. The negative
values of Êv , instead, indicate that vibrationally cold regions
become more dominant than vibrationally hot regions [i.e.,
〈Ev (t)〉 < 〈E∗v (t)〉] as we show momentarily. This effect inter-
acts with turbulence, which near equilibrium at longer times
is the dominant process as discussed by Donzis and Maqui.13

This regime is characterized with fluctuations in thermody-
namic variables,20 which locally create vibrationally hot or
cold regions. The specific degree of TNE would then depend
on the relative timescales of turbulent fluctuations driving
TNE and molecular TNE relaxation, that is, Kτ . Indeed for
TNE timescales comparable or slower than flow timescales,
we observe overshoot of mean vibrational energy equilibrium
energy.

This feature can be explained using the simple model rep-
resented by Eqs. (13) and (14), when spatial fluctuations and
averages are accounted for in the evolution. Consider two
realizations of this system of equations, one vibrationally cold
and another vibrationally hot such that 〈E∗v0

〉 < 〈Ev0 〉, where
the mean is trivially defined as the average of quantities at hot
and cold realizations [e.g., 〈Ev0 〉 = (Ehot

v0 + Ecold
v0 )/2]. The initial

translational–rotational energy is identical for both.

There are in general two contributing effects in the evo-
lution of Ev : one due to changes in E∗v and another one due
to changes in τv both on the right-hand side of Eq. (13). For
the hot realization, Ev decays toward E∗v and in doing so, T
increases due to the energy transfer. From Eq. (5), we see
that E∗v will increase and Ev will decrease, a combination
which tends to reduce the energy transfer rate in Eq. (14).
On the other hand, as T increases, τv decreases [Eq. (6)],
an effect that will tend to increase the energy transfer rate.
From DNS data, we observe that it is the evolution of τv that
has a stronger effect in the energy transfer rate in vibra-
tionally hot flows which, thus, results in a stronger Qv . For
the vibrationally cold realization, on the other hand, the relax-
ation would transfer energy from translational–rotational to
the vibrational mode and T decreases. Thus, both effects [i.e., a
decrease in (Ev −E∗v ) and increase in τv ] contribute to decrease
the rate at which energy is transferred. The overall effect is
thus seen to be an asymmetry between hot and cold evolu-
tions: relaxation in vibrationally cold zones becomes slower
as the decay proceeds, in contrast to hot zones where relax-
ation becomes faster as the decay proceeds. The result of this
dynamics is then a lower instantaneous average and a neg-
ative value for 〈Ev 〉 − 〈E∗v 〉. The evolution of the mean Êv for
the simple model is presented in Fig. 4 for different values of
δ ≡ (Ev ,hot−E∗v )/ |Ev ,cold−E∗v |, which is a measure of the degree of
initial non-equilibrium. Decreasing δ represents an increased
prevalence of vibrationally cold zones, which are slower to
relax. Consistent with the discussion above, we see, in Fig. 4,
an increasing overshoot at lower values of δ.
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FIG. 4. TNE relaxation in the simple model with one vibrationally hot and one
vibrationally cold realization for different degrees of non-equilibrium δ.

The applicability of this general argument for actual tur-
bulent flows would obviously depend on whether the flow
develops cold regions. This is indeed the case as can be seen
in Fig. 5, where we show the probability density function (PDF)
of Y = Ev −E∗v at several representative times during the decay.
At t = 0, the PDF presents nonzero values only for Y > 0, indi-
cating the existence of vibrationally hot regions only. As time
proceeds, however, we see that the PDF moves to the left.
Beyond t/τv ∼O(1), we see the appearance of a negative tail. At
this point, most of the initial TNE has decayed and the remain-
ing TNE is sustained by turbulence.13 The PDF is then close
to symmetric around positive and negative values, though the
mean, while small in this case, is not zero.13

Fluctuations in thermodynamic variables due to turbu-
lence also affect important TNE parameters such as 〈E∗v 〉 and
〈τv 〉. Since both of these quantities are involved in the decay

FIG. 5. Probability density function of Y = Ev − E∗v from DNS simulation at
different points of decay (τ = t/〈τv0〉) for Kτ = 5.08 and ξ0 = 1.39.

of TNE, it is of interest to assess turbulent effects especially
for turbulent modeling purposes. Donzis and Maqui13 showed
that turbulent fluctuations produce an increased storage of
energy in vibrational mode. It is clear from Eqs. (5) and (6) that
〈τv 〉 , τv (〈T〉, 〈ρ〉) and 〈E∗v 〉 , E∗v (〈T〉, 〈ρ〉) due to their nonlinear
dependence on their arguments. An expression for 〈E∗v 〉 can be
derived13 using a Taylor expansion of E∗v about 〈T〉, 〈ρ〉 as

〈E∗v 〉
E∗v (〈T〉, 〈ρ〉)

= 1 + hT〈T†
2
〉 + hρT〈ρ†T†〉 (16)

with

hT =
KTeKT

(
2 + KT + eKT (KT − 2)

)
2(eKT − 1)2

, (17)

hρT =
KTeKT

2(eKT − 1)
, (18)

where KT = θ/〈T〉, hT and hρT depend on molecular structure
and mean temperature only. T† ≡ (T − 〈T〉)/〈T〉 is the normal-
ized temperature, such that 〈T†2

〉 = 〈(T − 〈T〉)2〉/〈T〉2. Note that
the equilibrium vibrational energy also depends on density–
temperature correlation (〈ρT〉), which depends on the dynam-
ics of the flow, and 〈ρ†T†〉 is the corresponding mean normal-
ized density–temperature correlation. The derived expres-
sion agrees very well with the present DNS data as shown in
Fig. 6(a).

Similarly, one can obtain

〈τv 〉

τv (〈T〉, 〈ρ〉)
= 1 + gT〈T†

2
〉 + gρT〈ρ†T†〉 + gρ〈ρ†

2
〉, (19)

where

gT = 1 +
5
9
*
,

cτv2

〈T〉
+
-

1/3

+
1

18
*
,

cτv2

〈T〉
+
-

2/3

, (20)

gρ = 1, (21)

gρT =
1
2

+
1
6
*
,

cτv2

〈T〉
+
-

1/3

(22)

depend on molecular structure (cτv2 ) and mean flow temper-

ature. The fluctuations in density, 〈ρ†2
〉, directly affect 〈τv 〉

unlike 〈E∗v 〉 where hρ = 0. The role of turbulent fluctuations
is again obvious through the temperature–density correlation
where gρT is also a function of molecular structure and mean
temperature only. The good agreement of this expression and
the present DNS data is observed in Fig. 6(b).

The inset in both figures show directly the effect of tur-
bulence as we plot the ratio of the average quantity to the
equivalent laminar evaluation at the same mean conditions.
Fluctuations contribute more significantly to the equilibrium
vibrational energy than the vibrational relaxation time. The
effect on the former is seen to be up to 7.5% for the condi-
tions in the figure. The non-equilibrium observed when tur-
bulence fluctuations dominate is due to the vibrational mode
〈Ev 〉 lagging behind 〈E∗v 〉. This effect and its consequences are
discussed by Donzis and Maqui.13 It should also be noted that
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FIG. 6. Effect of turbulent fluctuations on TNE decay for Kτ = 0.03. (a) Evolution of
equilibrium vibrational energy from DNS (solid) and from Eq. (16) (dashed). Inset:
ratio 〈E∗v 〉/E∗v (〈T〉, 〈ρ〉) for t/〈τv0〉 < 1.5. (b) Evolution of vibrational relaxation
time from DNS (solid) and from Eq. (19) (dashed). Inset: ratio 〈τv 〉/τv (〈T〉, 〈ρ〉)
for t/〈τv0〉 < 1.5. All lines correspond to Kτ = 0.03.

〈T†2
〉 and 〈ρ†T†〉 grow strongly with the turbulent Mach num-

ber,13,20 Mt. Thus, these corrections are expected also to grow
in importance as compressibility levels increase.

IV. EFFECT OF TNE ON TURBULENCE DECAY
A. Turbulent kinetic energy dissipation: Effect of
degree of non-equilibrium and relaxation timescale

In Sec. III, we investigated the relaxation of vibrational
energy toward equilibrium as turbulence decays. Due to the
energy exchanges present in this situation, however, it is also
expected that the decay of turbulence itself be affected by the
additional energy present in the system in the form of an initial
vibrational excitation.

In fact, we observe that TNE does have a significant effect
on the turbulence decay rate. In Fig. 7, we show the rel-
ative departure of kinetic energy in the presence of initial

FIG. 7. Relative change in the decay of turbulent kinetic energy (K) for different
degrees of initial TNE. K corresponds to cases with TNE and Knv corresponds
to case with no TNE. Negative values mean kinetic energy decays faster in flows
with TNE. The lines correspond to Kτ = 0.03.

TNE from a decay without TNE for different levels of initial
TNE measured by ξ0 = 〈Ev0 〉/〈E0〉. Note that all simulations
start from identical initial conditions for velocity, density,
and translational–rotational energy from a forced statistical
steady state auxiliary simulation (Sec. II). We clearly see that
higher levels of initial vibrational energy lead to faster decay
of K. This is consistent with the experimental observations in
Ref. 16. We also see that while vibrational energy relaxes in
timescales of O(τv ), the effects of this process are apparent for
very long times.

From the energy exchanges shown in Fig. 1, one sees that
the decay of kinetic energy can be affected by two mecha-
nisms, namely, dissipation and pressure dilatation. It has been
observed that in a range of situations the latter is small.21,28,29

Indeed we have verified this to be consistent with all the sim-
ulations presented here. For example, we computed the time
integral of the ratio of average pressure–dilatation to dissi-
pation over timescales of order τv0 and found this be only a
few percentage points. The same result was obtained when
we compute ensemble averages over a range of initial con-
ditions with different levels of pressure-dilatation. Thus, it
is expected that changes in dissipation are responsible for
the distinct decays at different initial degrees of TNE. This is
indeed supported by DNS below.

The behavior of dissipation is shown in Fig. 8 for vary-
ing values of ξ0 [part (a)] and Kτ [part (b)]. From both fig-
ures, we observe a larger dissipation relative to a case without
TNE shown as dashed lines. Furthermore, dissipation is higher
for both large initial vibrational energies and fast vibrational
relaxation timescales. We also see that the increased dissipa-
tion happens at different normalized times t/τv0 . As we will see
later, the peak occurs at timescales comparable to the vibra-
tional relaxation time (∼O(τv )), which can be faster or slower
than hydrodynamic scales like the Kolmogorov timescale (τη )
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FIG. 8. Evolution of dissipation for initially vibrationally hot flows for (a) different
degrees of initial TNE at Kτ = 0.03 and (b) different vibrational characteristic
timescales at ξ0 = 1.4. Dashed lines: flow without TNE with the same initial
hydrodynamic state as all other simulations in the figure. The maximum value of
dissipation is marked with a circle. Inset in (a) shows (〈ε 〉/〈µ〉)/(〈ε 0〉/〈µ0〉).

or the eddy turnover time (τE) depending of the molecular
system under consideration and the flow conditions.

To understand this increase, we note that in fully devel-
oped turbulent flows, it is well-known that at high Reynolds
numbers, dissipation becomes independent of viscosity,30 a
phenomenon called dissipative anomaly. More recently, this
has also found support in compressible flows.21 However, dis-
sipative anomaly is expected to hold when turbulence is in a
state of statistical equilibrium where dissipation at the small
scales balances turbulence production at the largest scales. If
either one of these is quickly altered externally, the flow will
in general evolve toward a new equilibrium where the balance
between dissipation and production is restored. During this
transition, dissipative anomaly is not expected to hold.

This is indeed the case here. The evolution of the flow
configuration is such that energy deposition in the vibrational
mode triggers, through the Landau–Teller term in Eqs. (10) and
(11), an energy transfer to the translational–rotational mode in

a timescale of order τv . If τv is relatively short compared to
turbulence timescales, the translational–rotation temperature
〈T〉 will also increase in a timescale of order τv while turbu-
lence is essentially frozen. Thus, the temperature-dependent
viscosity will increase too. Because turbulence (velocity gradi-
ents) has not time to adjust to the new viscosity in τv , the dissi-
pation 〈ε 〉 = µ(2〈sijsij〉 − 2/3〈(∂ui/∂xi)(∂uj/∂xj)〉) will effectively
follow µ as well. In other words, the decay of TNE increases 〈T〉
and thus viscosity µ which in turn increases dissipation. This
is what we see in Fig. 9, where we show the evolution of vis-
cosity normalized by its initial value for different vibrational
energies. Viscosity increases in TNE timescales and becomes
larger with larger initial vibrational energy. Further evidence
of this mechanism is seen in the inset of Fig. 8(a), where we
show the evolution of 〈ε 〉/〈µ〉. If dissipation increases because
of an increase in viscosity, this normalized quantity will not
exhibit the peak seen in the main figure. This is indeed what is
observed.

We note that the increase in dissipation shown in Fig. 8 is
different from the increase in dissipation observed when sim-
ulations are started from an initial nonturbulent flow field (see,
e.g., Fig. 12 in Ref. 29). The increase in dissipation in such sim-
ulations is due to the development of new scales in the flow as
it approaches a turbulent state. Our simulations, on the other
hand, are at a fully developed turbulent state at t = 0 (when
TNE is introduced) where turbulent scales are fully developed.
The increase in dissipation, as noted, is due to increase in the
temperature-dependent viscosity caused by the decay of TNE.

The asymptotic value of viscosity can be calculated using
global energy conservation which in the present system
implies that the sum of all modes is constant during the decay,
that is, 〈E〉+〈Ev 〉+K = 〈E0〉+〈Ev0 〉+K0. At t→∞, turbulent kinetic
energy will vanish, and vibrational energy will tend to its

FIG. 9. Evolution of viscosity in TNE and flow timescales at different degrees of
initial TNE. Dashed lines (〈µ∞′〉/〈µ0〉) correspond to predicted increase from
instantaneous decay of TNE with frozen turbulence (t/τv0 > 1, t/τE � 1) and
dashed-dotted lines (〈µ∞〉/〈µ0〉) correspond to predicted increase from asymp-
totic decay of TNE and turbulence (see text for details). All cases correspond to
Kτ = 0.07 except for ξ0 = 1.39 (yellow line) at Kτ ≈ 95. Inset shows the case for
ξ0 = 0.14 normalized by τE .
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equilibrium state at the final temperature, 〈T∞〉. Correspond-
ingly, the final translational–rotational energy is denoted by
〈E∞〉. Thus, we can write

〈E∞〉 − 〈E0〉 =
(
〈Ev0 〉 − 〈E

∗
v∞
〉
)

+ K0, (23)

which simply states that the total change in temperature
is due to both vibrational relaxation and decay of turbulent
kinetic energy. Since 〈E∞〉 and 〈E∗v∞ 〉 depend on temperature,
this expression is an implicit equation for the final tempera-
ture 〈T∞〉. This is so because at t → ∞, there are no fluctua-
tions of temperature or density, which implies 〈E∞〉 = 〈ρ∞〉〈e∞〉
= 〈ρ∞〉(R/γ − 1)〈T∞〉 where averages, though unnecessary due
to the absence of fluctuations, are kept for consistency. Sim-
ilarly we can write 〈E∗v∞ 〉 = 〈ρ∞〉Rθv/(e

θv /〈T∞〉 − 1). Equation (23)
can be readily solved numerically for 〈T∞〉. Note that at very
high temperatures if vibration is fully excited (i.e., 〈Ev 〉 ≈ R〈T〉)
both at t = 0 and t → ∞, then an analytical expression can be
obtained for the final temperature, namely, 〈T∞〉 ≈ (5/7)〈T0〉 +
2(〈E∗v0

〉+K0)/7R. Finally, since µ ∝ T1/2, at t→∞ the increase of
viscosity is then

〈µ∞〉

〈µ0〉
≈

(
〈T∞〉
〈T0〉

) 1/2

. (24)

Now consider the case of very rapid vibrational relaxation,
that is, Kτ � 1. In this case, turbulence can be considered
frozen for times of the order of τv in which the decay of K
is negligible. All excess vibrational energy is then transferred
to translational–rotational energy. Conservation of energy can
then be approximated as

〈E∞′〉 − 〈E0〉 ≈
(
〈Ev0 〉 − 〈E

∗
v∞′
〉
)
, (25)

where the prime in the subscript ∞′ stands for the intermedi-
ate asymptotic state t/τv � 1 but t/τE � 1. This equation can
again be solved numerically (or analytically if vibration is fully
excited during the entire process) for 〈T∞′〉, which then yields
the relative increase of viscosity as 〈µ∞′〉/〈µ0〉 ≈ (〈T∞′〉/〈T0〉)

1/2.
Since K is not accounted for here, this intermediate asymp-
totic temperature is lower than the t → ∞ asymptotic value,
that is, 〈T∞′〉 < 〈T∞〉, which also implies 〈µ∞′〉 < 〈µ∞〉.

The two estimates for viscosity, namely, 〈µ∞〉 and 〈µ∞′〉,
are also are shown in Fig. 9 as dashed-dotted lines and dashed
lines respectively. We see that for times of order τv , viscos-
ity approaches 〈µ∞′〉 especially for small Kτ . For slow TNE
relaxation (large Kτ ), viscosity is expected to approach 〈µ∞〉.
Indeed, this is the case as shown in Fig. 9 for ξ0 = 1.39 with Kτ
= 0.07 (red) and Kτ = 94.8 (yellow). For the former, the increase
in viscosity at early times is purely due to TNE decay and
approaches the TNE limit, 〈µ∞′〉. For the latter, the increase in
viscosity approaches 〈µ∞〉, which results from the combined
TNE-turbulence decay. The figure also contains an inset with
the case ξ0 = 0.1 and Kτ = 0.07, which exhibits an interme-
diate asymptotic state 〈µ∞′〉 in TNE timescales and long-term
asymptotic behavior in eddy turnover timescales, τE0 (inset).

In summary, consistent with experimental observa-
tions,16 TNE relaxation can affect the decay of turbulence. The
main mechanism is found to be an increase in viscosity due to
the energy transfer from vibrational to translational-rotational

modes. This transfer depends on the relative timescales of
TNE and turbulence as well as the initial degree of TNE. The
governing parameters and the effect on the decay are dis-
cussed next, where we are also able to classify regimes in
which turbulence is and is not affected by initial TNE.

B. Non-dimensional parameters and asymptotic
states

In Sec. IV A, we have shown that the increase in viscos-
ity due to TNE decay results in an increase in dissipation. We
have also shown that excess vibrational energy (〈Ev0 〉 − 〈E

∗
v∞′
〉)

defines an asymptotic limit on this increase in viscosity 〈µ∞′〉
and therefore in dissipation 〈ε∞′〉. This asymptotic increase in
dissipation can now be related to the peak in dissipation 〈εp〉 at
t = τp in Fig. 8. For small Kτ , TNE decay is much faster than tur-
bulent processes in which case we expect all excess energy in
vibration to quickly equilibrate yielding 〈εp〉 ≈ 〈ε∞′〉. For larger
values of Kτ , TNE relaxation occurs simultaneously with tur-
bulence decay. In such a case, we expect 〈εp〉 < 〈ε∞′〉. For
t � τp, the degree of non-equilibrium decreases and a classical
turbulent decay dynamics becomes the dominant mechanism
in which dissipation, as described earlier, decays over time.
For very large values of Kτ , one may expect a very slow TNE
relaxation relative to the turbulent energy dissipation rate
decay—that is, the vibrational mode is frozen—in which case
turbulence is only weakly affected and a peak may not even
appear.

The conditions under which this occurs can be estab-
lished by considering the behavior of dissipation at short
times. For very small t, one can write a Taylor expansion of
dissipation as

〈ε 〉 = 〈ε0〉

(
1 − b

t
τE

)
, (26)

where b characterizes the decay rate of dissipation in time.
For turbulence without TNE, dissipation decays monotonically
and b > 0.

If TNE decay is very fast, the energy balance in Eq. (23)
can be rewritten as

〈E∞′〉 − 〈E0〉 = 〈Ev0〉 − 〈E∗v∞′ 〉, (27)

which, when divided by 〈E0〉, reads

〈E∞′〉
〈E0〉

− 1 =
〈Ev0〉 − 〈E∗v∞′ 〉

〈E0〉
, (28)(

〈µ∞′〉

〈µ0〉

)2

− 1 =
〈Ev0 〉 − 〈E

∗
v∞′
〉

〈E0〉
. (29)

The second line was obtained by noting that µ ∼
√
T ∼

√
E.

This equation relates the initial excess of the energy in the
vibrational mode to the increase in viscosity.

At the same time, Eq. (26) can be rewritten as(
〈ε 〉

〈ε0〉

)2

− 1 =
(
1 − b

t
τE

)2

− 1 . (30)

As explained above, dissipative anomaly does not hold for
rapid changes, in which case, we have instead 〈ε 〉/〈ε0〉
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≈ 〈µ〉/〈µ0〉. We can then evaluate Eq. (30) at t = tp, and equate
with Eq. (29), linearize the resulting equation, and solve for b
to obtain

b = −
1
2
〈Ev0〉 − 〈E∗v∞′ 〉

〈E0〉

1
KE

, (31)

where we see that b < 0 for initially vibrationally hot flows
(〈Ev0 〉 > 〈E

∗
v∞′
〉). This leads to an increase in dissipation due

to TNE decay as explained. In this short-time analysis, this
increase would clearly depend only on the nondimensional
group observed in Eq. (31), which for convenience we define
as

β =
〈Ev0〉 − 〈E∗v∞′ 〉

〈E0〉

1
KE

. (32)

We see that β is comprised of two parts: an energy ratio,
which is related to the maximum energy available that can
be transferred to the translational–rotational mode, and a
ratio of timescales, KE = τv/τE, which determines the rela-
tive timescales at which this transfer occurs. The value of β
depends solely on initial conditions and can be thus computed
a priori. Consistent with the observations made for Fig. 8, the
increase in dissipation depends not only on how much energy
is available in the vibrational mode but also on how fast this
energy is released.

We are thus interested in assessing whether β is indeed
the parameter governing the increase in dissipation. In
Fig. 10(a), we show the increase in dissipation (〈εp〉/〈ε0〉) for
the entire DNS database as a function of β. We observe
peaks in dissipation (〈εp〉 > 〈ε0〉) only when β > 1 reaching
an asymptotic value at β > 200 (shown as horizontal dashed
lines), which depends on the initial thermodynamic state (ξ0)
and excess energy in the vibrational mode (ξv0) according to
Eq. (25). For small values of β, the vibrational energy available
for increase in dissipation is small or KE � 1, which implies that
turbulence is faster than TNE timescales and energy transfer
from vibration to translational–rotational mode is slow. Then
turbulence will largely remain unaffected and we observe no
peak for β < 1 in Fig. 10(a). This does not however mean that
TNE does not play a role. For β close to 1, for example, one
still observes an increase in dissipation, which increases with
initial vibrational energy. This increase, however, occurs over
flow timescales and is not large enough to exceed the value of
dissipation at initial conditions.

In Fig. 10(b), we show ε̂ ≡ (〈εp〉 − 〈ε0〉)/(〈ε∞′〉 − 〈ε0〉), the
ratio of the difference between the peak dissipation from its
initial value and the difference between its asymptotic peak
dissipation (〈ε∞′〉) and the initial dissipation for the entire
database. If the energy exchange due to TNE relaxation is
not strong enough, then dissipation will not increase suffi-
ciently fast to compensate for the concurrent turbulent decay
and dissipation is maximum at t = 0, which implies ε̂ = 0. If,
on the other hand, all the excess vibrational energy is trans-
ferred to translational–rotational energy before turbulence
evolves appreciably then ε̂ = 1 as the peak in dissipation is
equal to the asymptotic value, predicted by Eq. (29) with an
〈ε∞′〉/〈ε0〉 ≈

〈
〈µ∞′〉/〈µ0〉.

FIG. 10. (a) Normalized peak in dissipation 〈ε p〉/〈ε 0〉 as a function of β.
Dashed horizontal lines correspond to asymptotic value predicted using Eq. (25).
(b) Normalized change in dissipation relative to asymptotic change ε̂ = (〈εp〉
− 〈ε0〉)/(〈ε∞′〉 − 〈ε0〉). (c) The time of occurrence of the peak in dissipation as a
function of KE = τv /τE .

The substantial degree of universality observed in terms
of characteristics of the diverse set of initial conditions of the
flow (e.g., ξ0, Kτ , Mt) suggests that β is indeed the governing
parameter for the increased dissipation for all TNE and flow
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conditions. Figure 10(b) also identifies the asymptotic regime
beyond β > 200 as mentioned earlier.

Of interest is also the time of occurrence of the peak
(τp). This is shown in Fig. 10(c) relative to the hydrodynamic
timescale τE. Because the peak in dissipation, if one exists,
occurs at TNE timescales, τp/〈τE〉 is seen to scale approxi-
mately as KE. For KE > 1, the initial value of dissipation is the
maximum, i.e., τp = 0, and turbulent processes largely govern
the decay of dissipation in time. The instantaneous dissipa-
tion is still higher than cases without TNE. In this regime,
TNE is slower than turbulent processes and leaves them
largely unaffected (β < 1). Energy stays longer in vibrational
modes and is released slowly to the translational–rotational
mode. τp is seen to differ somewhat from τv0 due to lat-
ter becoming smaller as TNE relaxation proceeds. The addi-
tional scatter seen in the data at intermediate values of KE
seems to stem from second-order effects related to turbulent
fluctuations.

The scaling proposed above is useful to understand other
results in the literature. For example, Neville et al.19 conducted
decaying simulations where the initial conditions correspond
to complete thermal equilibrium. After a short initial period,
the flow developed TNE due to difference in flow and TNE
timescales, which will depend on mean and fluctuation lev-
els of translational temperature.13 As turbulence decays, the
mean temperature increases faster than the relaxation of TNE,
which results in a vibrationally cold flow. They observed no
increase in dissipation and thus no change in the decay of tur-
bulent kinetic energy. Using the data available in Ref. 19, we
can estimate that after a very short period of time, the simula-
tions would have |β | ∼ 10−3 at most. From Figs. 10(a) and 10(b), it
is clear that at these conditions one would not observe any sig-
nificant increase in dissipation consistent with their reported
behavior.19

The experiments by Fuller et al.,16 on the other hand,
consisted of a flow with initially vibrationally hot conditions,
similar to the present study. They observed a faster decrease
of K when vibrational excitation was increased. In particular,
they reported an increase in n in a classical power-law decay
K ∼ t−n, which can be used to estimate the additional dissi-
pation produced by the introduction of vibrational TNE. Since
dK/dt ≈ −〈ε 〉, it is readily shown that the ratio of dissipation
for two different conditions at t = τp ≈ τv [see Fig. 10(c)] is
the ratio of exponents n. For their 300 W settings case, tem-
peratures were T = 295 K and Tv = 1550 K (corresponding
to ξ0 ≈ 0.5) and they measured n = 1.25 compared to n = 1
for the case without vibrational excitation. Thus, we estimate
〈ε300〉/〈ε0〉 ≈ n300/n0 ≈ 1.25, i.e., a 25% increase in dissipa-
tion. Using the initial vibrational and rotational–translational
energy reported, we can use Eq. (29) to estimate precisely a
25% asymptotic increase in dissipation. However, the excel-
lent quantitative agreement between the experimental mea-
surement and our prediction is considered somewhat fortu-
itous given all the estimations and uncertainties involved in
the comparison. Furthermore, using reported data, we esti-
mate β ∼ O(1), which is not in the asymptotic regime. Thus, we

consider the good comparison observed, though correct, only
qualitative in nature.

V. CONCLUSIONS
We have investigated the interaction of turbulence with

thermal non-equilibrium (TNE) using well-resolved direct
numerical simulations (DNS). In particular, we focused on the
two-way coupling between vibrational non-equilibrium and
decaying turbulence, its governing parameters, and possible
regimes of this interaction. For this, we generated a large DNS
database with a wide range of parameters characterizing the
TNE.

A general conclusion from this work is that the strength
of the interaction and the degree in which TNE can affect the
dynamics of turbulence depend on the initial degree of non-
equilibrium and its relaxation time relative to hydrodynamic
timescales. Therefore, the interaction is determined by the
state of turbulence, its thermodynamic state, as well as the
molecular structure of the fluid.

We showed that TNE decays at timescale of the order of
its initial relaxation time. Larger initial energy in the vibra-
tional mode leads to a faster effective decay rate of TNE.
This relaxation toward equilibrium leads, through molec-
ular collisions, to an increase of translational–rotational
energy. Because of the temperature dependence of molec-
ular transport coefficients, in particular viscosity, dissipa-
tion may increase temporarily leading to faster turbulence
decay. From global energy conservation and classical scal-
ing laws, we found the asymptotic increase in dissipa-
tion if all excess vibrational energy would relax relatively
quickly.

We further showed that the governing parameter (β) con-
tains a combination of the initial degree of non-equilibrium
and the ratio of TNE and turbulence timescales. The effect
of TNE on turbulence is determined by this parameter. When
β is below unity (too little initial excess energy in vibrational
modes or too long relaxation times), dissipation does not
exhibit a peak. For β > 200, the asymptotic energy conversion
is observed. These two cases would correspond, respectively,
to a turbulence frozen case (fast TNE relaxation) and frozen
TNE (slow TNE relaxation). The cases in between are seen to
be characterized by a universal curve in β when normalized
appropriately.

The identification of the governing parameter and pos-
sible regimes of the interaction helped explain the disagree-
ments between simulations and experiments in the literature
about the effect of TNE on decay rates: the specific conditions
in these studies correspond to different values of β though
some other parameters were matched.

Turbulence was also found to modify TNE relaxation. At
long times compared to TNE, turbulence fluctuations were
found to be the main driver of non-equilibrium consistent
with the results for steady flows in Ref. 13. At short times,
it was found that although the flow starts vibrationally hot
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everywhere, the flow can become vibrationally cold in the
mean during a transient period. This new effect was explained
to be due to the strongly nonlinear dependence of the relax-
ation timescale τv on temperature, which leads to instanta-
neous and local relaxation rates that can be very different at
different locations in the flow. The mechanism for this effect
was illustrated by a simple system, which reproduces asym-
metry observed between relaxation from vibrationally cold
and hot regions.

We close by mentioning a potential application of the
effects observed here. It is clear that vibrational excitation
can lead to non-negligible changes in the fundamental turbu-
lent cascade of energy. The rapid decay of turbulent fluctua-
tions may, for example, be leveraged to reduce drag or heat
exchange over surfaces in high-speed flows. The specifics of
such a control mechanism by TNE is, in fact, part of ongoing
research.
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