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Fluctuations of thermodynamic variables in
stationary compressible turbulence
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A large database of new direct numerical simulations of forced compressible
turbulence on up to 20483 grids, and a range of Reynolds (Rλ) and turbulent Mach
(Mt) numbers, is analysed to study the scaling of pressure, density and temperature
fluctuations. Small-perturbation analysis is used to study the scaling of variances, and
different cross-correlations as well as spectra. Qualitative differences are observed
between low and high Mt. The probability density functions (p.d.f.s) of pressure
and density are negatively skewed at low Mt (consistent with incompressible results)
but become positively skewed at high Mt. The positive tails are found to follow
a log-normal distribution. A new variable is introduced to quantify departures from
isentropic fluctuations (an assumption commonly used in the literature) and is found
to increase as M2

t . However, positive fluctuations of pressure and density tend to be
more isentropic than negative fluctuations. In general, Reynolds number effects on
single-point statistics are observed to be weak. The spectral behaviour of pressure,
density and temperature is also investigated. While at low Mt, pressure appears to
scale as k−7/3 (k is the wavenumber) in the inertial range as in incompressible flows, a
k−5/3 scaling also appears to be consistent with the data at a range of Mach numbers.
Density and temperature spectra are found to scale as k−5/3 for a range of Mach
numbers.
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1. Introduction
A distinguishing feature of compressible turbulence is the appearance of fluctuations

in thermodynamic variables. In many situations of practical and fundamental interest,
it can be assumed that the flow is in thermodynamic equilibrium, in which case
thermodynamic states can be determined by two thermodynamic quantities alone
(Denbigh 1981). In the case of a so-called perfect gas, the relation between pressure p,
density ρ, and temperature T can be explicitly written as

p= ρRT, (1.1)

where R is the gas constant of the particular fluid under consideration.
When the flow is turbulent, both hydrodynamic as well as thermodynamic variables

exhibit nonlinear fluctuations in time and space over a range of scales which increases
with the Reynolds number. Further, these fluctuations are expected to depend on the
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level of compressibility in the flow, which is typically quantified by the turbulent
Mach number. Under the assumption of local and instantaneous thermal equilibrium,
(1.1) has been extensively used to study a number of compressible turbulent flows
numerically and experimentally (Lele 1994; Smits & Dussauge 2006; Pirozzoli 2011).
The importance of understanding both mean and fluctuating parts of thermodynamic
variables is well known as they play a major role in energy exchanges between
kinetic and internal energy, in the overall dynamics in wall-bounded flows, and sound
generation, among others.

To understand a fluctuating quantity, g, it is useful to use Reynolds decomposition
which splits g into mean and fluctuating parts, g = 〈g〉 + g′ where 〈g′〉 = 0. Here
angular brackets 〈·〉 denote a suitable ensemble average. An obvious consequence of
the Reynolds decomposition of (1.1) is that mean quantities are not related according
to an analogue of (1.1):

〈p〉 6= R〈ρ〉〈T〉. (1.2)

While departures are expected to be small in some circumstances, it is also expected
that the degree of the discrepancy will depend on both Reynolds and Mach numbers.
Similar considerations apply to the fluctuating parts. Furthermore, these fluctuations
occur over a wide range of spatial and temporal scales. Thus, an important aspect of
this phenomenon, as well as many other multiscale phenomena, is the distribution of
energy across these scales, typically quantified using power spectra.

Our main objective here is to study the nature of pressure, density and temperature
fluctuations as well as their interrelation, with an emphasis on the scaling with the
Taylor Reynolds number Rλ ≡ 〈ρ〉u′λ/µ (u′ is the root mean square (r.m.s.) of a
velocity component, λ ≡ u′/〈(∂u/∂x)2〉1/2 is the Taylor microscale, and µ is the mean
viscosity) and the turbulent Mach number Mt = 〈uiui〉1/2/c (c is the mean speed of
sound and summation is implied). For this we have generated a large database of
direct numerical simulations (DNS) of isotropic compressible turbulence.

There have been numerous studies investigating different aspects of the effects
of compressibility on turbulence using DNS in decaying flows (Lee, Lele & Moin
1991; Sarkar et al. 1991; Kida & Orszag 1992; Samtaney, Pullin & Kosovic 2001;
Pirozzoli & Grasso 2004; Lee & Girimaji 2011) and forced flows (Kida & Orszag
1990; Petersen & Livescu 2010; Wang et al. 2011, 2012). A general conclusion from
these studies is that the evolution of some variables depends significantly on initial
conditions or forcing schemes. In particular, the decaying cases show that quantities
such as dilatation or pressure–dilatation correlation present a strong dependence on the
initial degree of compressibility as well as on thermodynamic fluctuations while others,
such as turbulent kinetic energy, possess only a weak dependence on them. For forced
flows, while the statistics depend on whether the forcing is solenoidal or dilatational,
the long-term statistics seem independent of initial conditions. This kind of flow is
our main interest here. Similar conclusions apply to shear flows (Blaisdell, Mansour &
Reynolds 1993), where it has also been suggested that this weak dependence on initial
conditions may cause modelling of forced flows to be more amenable to analytical
treatment. Specifically, our forcing scheme is purely solenoidal and applied to the
momentum equation (described in § 2), which allows us to investigate fluctuations of
thermodynamic variables as a result of Navier–Stokes dynamics exclusively, leaving
the effect of dilatational forcing for future investigations.

Unlike previous work, our focus is on a systematic study of the scaling of
the fluctuating thermodynamic variables and their mutual relation as a result of
the equation of state (1.1) at a wide range of Reynolds and Mach numbers,
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using simulations at unprecedented resolutions. In addition to the importance of
studying the Reynolds and Mach number scaling of low-order moments such as
the variance of thermodynamic variables (Lele 1994; Smits & Dussauge 2006),
there is also interest in more complete descriptions of these variables. For example,
while the probability density function (p.d.f.) of pressure is negatively skewed in
incompressible flows (Pumir 1994), as the turbulent Mach number increases and
fluctuations become stronger, this asymmetry cannot be sustained for arbitrarily large
fluctuations in compressible flows, since pressure, being a positive quantity, requires
bounded negative fluctuations. There has also been interest in the statistics of density
fluctuations, as they are related, for example, to the process of star formation and
development of hierarchical structures (Scalo et al. 1998). In particular, the scaling
of the variance of density with the Mach number seems to be of particular relevance,
along with the specific form of the entire p.d.f. (Federrath, Klessen & Schmidt 2008).
It has been suggested, based on different assumptions, that the p.d.f. of density should
obey log-normal statistics (Blaisdell et al. 1993) even in isothermal flows (Padoan,
Jones & Nordlund 1997; Beetz et al. 2008; Federrath et al. 2008). However, this has
not been studied systematically for fully turbulent non-isothermal flows at a range of
Reynolds and Mach numbers. As we show below, log-normality is indeed observed,
though only for positive fluctuations. Negative fluctuations are wider than log-normal
but they narrow as the Mach number increases, indicating a possible log-normal
behaviour for the entire p.d.f. at very high Mt.

The specific relation between different thermodynamic variables in turbulent flows is
also of great interest, particularly for turbulence modelling. In a number of theoretical
approaches aimed at understanding compressible turbulence (e.g. Chandrasekhar 1951;
Kraichnan 1953; Erlebacher et al. 1990), fluctuations are taken to be isentropic
due to the significant analytical simplifications that result from such an assumption.
However, it is not clear, a priori, to what degree such an assumption is justified. As
we show below, while departures from isentropic behaviour grow with Mt, positive
fluctuations of density and pressure, for example, tend to be more isentropic than
negative fluctuations.

In addition to single-point statistics which provide important information about
the nature of random processes in general, one is also interested in the spatial
structure of the fluctuations. Thus, it is also common to study the power spectrum of
these variables. Classical phenomenology for incompressible flows (Monin & Yaglom
1975) suggests universality at small scales with a k−7/3 inertial-range scaling (k is
the wavenumber) for the pressure spectrum, which has indeed been observed in
simulations (Gotoh & Fukayama 2001) and experiments (Tsuji & Ishihara 2003).
Similar scaling is thus expected for compressible flows at low Mt. However, in
order to assess inertial-range scaling, high Reynolds numbers are needed, in which
case simulations may become computationally extremely expensive. With current
computational power it is now possible to assess some of these issues, as we
show below. Density spectra have also been extensively studied, though mainly in
astrophysical contexts where the flow is typically treated as isothermal (e.g. Dastgeer
& Zank 2005). However, little is known about the Reynolds and Mach number scaling
of density spectra in non-isothermal flows, especially at high Rλ. A similar situation
exists for temperature spectra, which have rarely been studied in fully compressible
turbulence. The challenge here is, again, the need to achieve Reynolds numbers high
enough to observe inertial-range scaling at a range of Mach numbers. As we show
here, our largest simulations support a k−5/3 scaling for density and temperature, which
can be explained by the nature of temperature fluctuations assumed to be passively
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advected by the flow. A general polytropic relation between thermodynamic variables
is shown to result in k−5/3 scaling for all of them.

The rest of the paper is organized as follows. In § 2 we describe the DNS database,
the numerical method, and the forcing used in the present work. In § 3 we present
results on the Reynolds and Mach number scaling of statistics of pressure, density, and
temperature fluctuations including moments and p.d.f.s. The isentropic assumption and
the support (or lack thereof) from DNS data is discussed in § 4. The focus of § 5 is on
the scaling of spectra of thermodynamic variables. Conclusions are offered in § 6.

2. Numerical methods and database
The DNS code solves the fully compressible Navier–Stokes equations with variable

viscosity (power-law in temperature with exponent 0.5 and constant Prandtl number,
Pr = 0.72) using tenth-order compact schemes in space and third-order Runge–Kutta
in time. The code has been scaled to hundreds of thousands of processors
(Jagannathan & Donzis 2012). The forcing scheme is stochastic and applied at large
scales using Gaussian random processes with finite-time correlation following that of
Eswaran & Pope (1988) for incompressible flows. Mathematically, an additional term
is included in the momentum equation of the form

f =
∑
|k|<kF

f̂⊥(k)e−ik·x, (2.1)

where f̂⊥(k) = P · f̂ (k) with P = I − kk/k2 being the standard projection operator
onto a plane perpendicular to k to ensure that forcing is purely solenoidal. The
three-dimensional complex vector f̂ (k) is constructed using six independent integrated
Ornstein–Uhlenbeck random processes. Unlike white noise, these processes have the
property of being differentiable and, furthermore, possess a finite-time correlation.
The actual energy input is the result of the correlation between the forcing and the
velocity vector 〈f · u〉 which is obtained by dotting the momentum equations with
the velocity vector. Energy is removed from the system uniformly (via the energy
equation) so that the mean temperature remains constant. The forcing parameters
are chosen such that target Reynolds and Mach numbers are attained with integral
length scales being about a fifth of the domain while the ratio of grid spacing and
Kolmogorov scale (η ≡ (ν3/〈ε〉)1/4) is always less than 2. Consistent with other studies
(Petersen & Livescu 2010), grid convergence tests (to be published elsewhere) show
that this resolution is enough to yield grid insensitive results. A summary of the DNS
parameters is shown in table 1. We have also included the ratio of dilatational kinetic
energy Kd to the total kinetic energy K which is a measure of the importance of
compressibility at large scales (Kida & Orszag 1990). While Kd/K grows with Mt, it is
always below ∼5 % for all the cases presented here. The skewness of the longitudinal
velocity gradient, which is related to the nonlinear energy transfer, has been found to
be consistent with incompressible results (Sreenivasan & Antonia 1997) with a value
between −0.45 and −0.6 for all cases.

3. Single-point statistics of thermodynamic variables
As highlighted in (1.2), the mean pressure is not determined by the mean density

and mean temperature alone. Instead, by taking the mean of (1.1) we find

〈p〉 = R〈ρT〉 = R[〈ρ〉〈T〉 + 〈ρ ′T ′〉], (3.1)
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N3 Rλ Mt 〈p∗2〉1/2 〈ρ∗2〉1/2 〈T∗2〉1/2 〈ρ∗T∗〉1/2 Kd/K

643 39 0.10 0.0048 0.0037 0.0013 0.0019 0.0000
643 32 0.20 0.0196 0.0154 0.0054 0.0077 0.0002
643 33 0.28 0.0404 0.0308 0.0114 0.0167 0.0024
643 38 0.39 0.0867 0.0652 0.0248 0.0369 0.0110
643 34 0.59 0.2056 0.1518 0.0594 0.0876 0.0388

1283 63 0.09 0.0040 0.0032 0.0012 0.0015 0.0000
1283 54 0.22 0.0218 0.0169 0.0061 0.0088 0.0004
1283 60 0.29 0.0626 0.0460 0.0178 0.0273 0.0132
1283 65 0.38 0.0991 0.0728 0.0281 0.0430 0.0245
1283 58 0.58 0.2021 0.1479 0.0580 0.0872 0.0440

2563 104 0.10 0.0039 0.0030 0.0011 0.0016 0.0000
2563 101 0.20 0.0189 0.0144 0.0054 0.0079 0.0007
2563 103 0.33 0.0630 0.0466 0.0180 0.0273 0.0108
2563 107 0.40 0.0887 0.0658 0.0255 0.0384 0.0138
2563 100 0.61 0.2167 0.1570 0.0623 0.0943 0.0491

5123 173 0.10 0.0039 0.0030 0.0011 0.0016 0.0000
5123 173 0.21 0.0180 0.0136 0.0051 0.0075 0.0001
5123 163 0.31 0.0562 0.0413 0.0162 0.0245 0.0100
5123 161 0.56 0.1834 0.1324 0.0527 0.0807 0.0396

10243 268 0.33 0.0462 0.0345 0.0136 0.0198 0.0021

20483 430 0.31 0.0381 0.0283 0.0111 0.0165 0.0009

TABLE 1. DNS parameters: number of grid points (N3), Reynolds and turbulent Mach
numbers (Rλ, Mt), and normalized standard deviation of pressure, density, and temperature
as well as the covariance between density and temperature (see text). Kd/K is the ratio of
dilatational kinetic energy to total kinetic energy.

or

〈p〉
R〈ρ〉〈T〉 = 1+ 〈ρ

′T ′〉
〈ρ〉〈T〉 = 1+ 〈ρ∗T∗〉, (3.2)

where the superscript ∗ is used to denote fluctuations normalized by the mean
(ρ∗ = ρ ′/〈ρ〉, T∗ = T ′/〈T〉). Equation (3.2) shows that the inequality in (1.2) is
due to a term involving density and temperature fluctuations. As an aside we note
that (3.1) can also be written in a more compact form using so-called Favre (or
mass-weighted) averages as 〈p〉 = R〈ρ〉T̃ (where the tilde represents a Favre average).
However, this does not allow us to analyse the different contributions that result from
various correlations involving density, and would thus not be used here.

In figure 1 we show the mean pressure normalized as in (3.2) as a function of
the turbulent Mach number for all Reynolds numbers. At low Mt, the mean pressure
can be accurately represented by the mean density and temperature. However, as Mt

increases, departures are apparent due to the correlation between ρ ′ and T ′. Reynolds
number effects are seen to be very weak.

Equation (1.1) can also be used to obtain expressions for higher-order moments. For
example, by applying Reynolds decomposition, and subtracting (3.2), we obtain an
equation for pressure fluctuations, p′ = R[ρ ′〈T〉 + 〈ρ〉T ′ + ρ ′T ′ − 〈ρ ′T ′〉]. Squaring this



226 D. A. Donzis and S. Jagannathan

0 0.2 0.4 0.6 0.8
0.99

1.00

1.01

1.02

1.03

FIGURE 1. Mean pressure 〈p〉 normalized by mean density and temperature. The symbols
correspond to Rλ ≈ 38 (◦), 60 (�), 100 (4), 170 (�), 270 (O), and 430 (C). The solid and
dashed lines are 1+ (Mt/1.72)4.5 and 1+ (Mt/1.97)4, respectively (see text).

result, averaging and normalizing by (R〈ρ〉〈T〉)2 yields an expression for the pressure
variance:

〈p′2〉
(R〈ρ〉〈T〉)2 = 〈ρ

∗2〉 + 〈T∗2〉 + 2〈ρ∗T∗〉

+ 3〈ρ∗T∗〉2 + 〈ρ∗2T∗2〉 + 2〈ρ∗2T∗〉 + 2〈ρ∗T∗2〉. (3.3)

If fluctuations are small, high-order terms (the last four terms) are expected to be
negligible. More formally, we can expand (1.1) about the mean state using a Taylor
series, 〈p〉 + p′ = R〈ρ〉〈T〉 + (∂p/∂ρ)ρ ′ + (∂p/∂T)T ′ + (∂2p/∂ρ∂T)ρ ′T ′ + · · · , where
derivatives are evaluated at the mean temperature and density. We can now use this
result with (3.2), keep only leading-order terms, square the expression and average, to
obtain

〈p′2〉
(R〈ρ〉〈T〉)2 ≈ 〈ρ

∗2〉 + 〈T∗2〉 + 2〈ρ∗T∗〉, (3.4)

consistent with the first terms in (3.3).
In figure 2 we show all the terms in (3.4) (also included in table 1). In

incompressible flows it is well established that 〈p′2〉1/2 ≈ A〈ρ〉u′2, where u′ is typically
taken as the root mean square of one velocity component and A ≈ 0.92 from DNS
data (Donzis, Sreenivasan & Yeung 2012). Using the mean speed of sound 〈c〉 =
〈√γRT〉 ≈ √γ 〈p〉/〈ρ〉, with γ being the ratio of specific heats (we have assumed
〈√T〉 ≈ √〈T〉), we can normalize the pressure variance as in (3.4) to obtain

〈p′2〉
(R〈ρ〉〈T〉)2 ≈

A2γ 2

9
Mt

4, (3.5)

where the factor 9 appears because Mt is defined using the magnitude of the velocity
vector instead of a single component. This expression is compared with DNS in
figure 2(a) as a dot-dashed line which is seen to be slightly below the data. A value
of A = 1.2 represents the DNS more accurately, especially if only data at Mt & 0.3
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FIGURE 2. Terms in (3.4): (a) 〈p′2〉/(R〈ρ〉〈T〉)2, (b) 〈ρ∗2〉, (c) 〈T∗2〉, (d) 2〈ρ∗T∗〉. The
symbols for different Reynolds numbers are as in figure 1; the solid lines correspond to
(3.5) with A = 1.2 for comparison; the dot-dashed line in (a) is (3.5) with A = 0.92 from
Donzis et al. (2012); the dashed lines are best-fit power laws; the black dots and the asterisk
in (b) correspond to data from Kida & Orszag (1990) and Wang et al. (2012), respectively.

are considered. A closer look, however, reveals that the dependence on Mt is slightly
steeper than that suggested by (3.5) with a best-fit exponent of 4.4. This departure
from incompressible scaling appears to indicate compressibility corrections to the
pressure variance. Indeed, we have inspected the ratio of variances of ‘incompressible’
pressure (obtained from the standard Poisson equation using the solenoidal velocity
field) and ‘compressible’ pressure (the difference between pressure and its solenoidal
component) and found a decrease from O(100) at the lowest Mt ≈ 0.1 to about O(1)
for Mt > 0.4.

Figures 2(b)–2(d) show the three terms on the right-hand side of (3.4), where we
also include (3.5) to compare the relative contribution of the different components.
Density fluctuations (figure 2b) comprise the dominant term in the expression for
pressure variance. Figure 2(b) also includes data from Kida & Orszag (1990) and
Wang et al. (2012), two DNS investigations with different forcing schemes and
Reynolds numbers. The scaling and magnitude of the fluctuations appear to be
relatively consistent across these DNS data. This is interesting, especially taking into
account that the simulations of Kida & Orszag (1990) were not in a stationary state as
no energy was removed from the system.

While temperature fluctuations (figure 2c) are an order of magnitude smaller than
density, the covariance between them (the last term in (3.4)) represents a non-
negligible contribution to the pressure variance. This can also be seen in figure 3
where ratios of the different contributions to pressure are shown. Density and density-
temperature fluctuations appear to approach a constant at higher Mt. Temperature
variance, on the other hand, remains a constant fraction of pressure variance for
the entire range of Mach numbers. This constant, as well as the asymptotic states
above, are discussed in § 4. For all cases, the Reynolds number effects appear to be
negligible.

Just as with pressure fluctuations, the Mach number scaling of the different
contributions in (3.4) is slightly steeper than Mt

4 suggested by (3.5). Best-fit exponents
for density, temperature and density-temperature fluctuations over the entire range of
Mt are 4.3, 4.4 and 4.5, respectively. The scaling of 〈ρ∗T∗〉 can be used in (3.2) for the
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FIGURE 3. Ratios (from top to bottom) 〈ρ∗2〉/X, 2〈ρ∗T∗〉/X, and 〈T∗2〉/X with X =
〈p′2〉/(R〈ρ〉〈T〉)2. The symbols for different Reynolds numbers are as in figure 1. The dashed
lines are isentropic relations (§ 4) 1/γ 2, 2(γ − 1)/γ 2, and (γ − 1)2/γ 2 (from top to bottom).

mean pressure. The result is also shown in figure 1. The difference made by using an
exponent of 4 or 4.5 is seen to be small but may be relevant at higher Mach numbers.

For many fluctuating quantities, the mean value and variance provide only partial
information about the nature of the fluctuations, especially those that are far from the
mean. A more complete description of fluctuations at all levels is contained in the
p.d.f. It is known that in incompressible turbulence, the p.d.f. of pressure fluctuations,
fp, is negatively skewed with the positive tail being close to Gaussian (Pumir 1994;
Vedula & Yeung 1999). In figure 4(a) we show this p.d.f. at Rλ ≈ 100 and various
turbulent Mach numbers. At the lowest Mt ≈ 0.1, the p.d.f. is consistent with
incompressible results. As Mt increases, however, the p.d.f. narrows on the negative
side to become slightly sub-Gaussian, and widens on the positive side. This suggests
a qualitative difference between compressible and incompressible flows, namely, the
increased probability of relatively large pressures (positive fluctuations) in the former
as Mt increases, compared to relatively low pressures (negative fluctuations) in the
latter. A plausible explanation for this shift is that pressure is a positive quantity,
which implies that fluctuations are necessarily bounded from below according to
p′ >−〈p〉. Thus, the increase in the intensity of pressure fluctuations with Mt (figure 2)
must come from positive fluctuations where such constraint does not exist. The
skewness towards the positive tail is then expected at high Mt. In general, Reynolds
number effects are much weaker, as seen in figure 4(b) where fp is shown for different
Reynolds numbers at the highest Mt available.

A more quantitative measure of the asymmetry seen in the p.d.f. is the skewness
factor Sp ≡ 〈p′3〉/〈p′2〉3/2, shown in figure 5(a). At the lowest Mt, Sp is close to −1
consistent with incompressible flows (Cao, Chen & Doolen 1999; Vedula & Yeung
1999) but increases to values close to 0.5 at Mt ≈ 0.6. At low and high Mt, the
Reynolds number effect is seen to be very weak, consistent with figure 4(b). Between
Mt ≈ 0.3 and 0.4, however, which corresponds to the transition where Sp changes sign,
the data present more scatter. Because the Reynolds number trend is not monotonic
at this Mt, this seems to be a reflection of the well-known statistical difficulties in
computing odd-order moments of symmetric fluctuations.

Long p.d.f. tails are generally associated with large fluctuations and high flatness
factors, making the latter a suitable indicator of the nature of intense fluctuations and
departures from Gaussianity. In figure 5(b) we show Fp ≡ 〈p′4〉/〈p′2〉2, the flatness of
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FIGURE 4. Probability density functions of pressure (a,b), density (c,d) and temperature (e,f )
fluctuations. (a,c,e) Rλ ≈ 100, and symbols for Mt ≈ 0.1 (◦), 0.2 (�), 0.3 (�), 0.4 (4), and
0.6 (B). The arrows indicate increasing Mt. (b,d,f ) Mt ≈ 0.6, and the symbols for different
Reynolds numbers are as in figure 1. Standard Gaussian distribution (dashed lines) in all plots
for comparison.

pressure. The long negative tails in the p.d.f.s in figure 4(a) at low Mt are consistent
with high flatness factors. Quantitatively, this is also consistent with incompressible
flows (Vedula & Yeung 1999) where Fp is between 5 and 7 at similar Reynolds
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FIGURE 5. Skewness (a,c,e) and flatness (b,d,f ) factors for pressure (a,b), density (c,d) and
temperature (e,f ). The symbols for different Reynolds numbers are as in figure 1.

numbers. At higher Mt, there is a monotonic decrease to values close to 3 (Gaussian).
However, since asymmetries in the p.d.f. are also apparent at these Mach numbers (see
figure 4b), this is not indicative of Gaussian behaviour.

Density fluctuations present a similar behaviour to that of pressure. This is seen by
comparing the p.d.f.s in figure 4(c,d) and skewness and flatness factors in figure 5(c,d)
to those for pressure. However, the positive skewness of fρ is less pronounced than
that of fp, especially at high Mt. Finally, temperature fluctuations appear to be the least
affected by both Reynolds and Mach number effects (figure 4e,f ). The skewness and
flatness factors for temperature (ST and FT) are relatively small in magnitude compared
to the counterparts for pressure or density fluctuations (figure 5e,f ) and closer to
Gaussian.

We note, however, that the comparison of fluctuations in thermodynamic variables to
Gaussian statistics has a fundamental limitation. Obviously, as pointed out above, p, ρ
and T are positive quantities, which would then require that p′ >−〈p〉, ρ ′ >−〈ρ〉 and
T ′ > −〈T〉. Thus, the p.d.f.s of fluctuations would present, in principle, an asymmetry
since their theoretical support would extend from the negative of the mean to (positive)
infinity.

While some of the p.d.f.s appear to possess Gaussian characteristics (e.g. the
positive tail at low Mt or the negative tail at high Mt), there are reasons to expect
density, in particular, to follow log-normal statistics. For example, it can be argued
(Blaisdell et al. 1993) that, since the continuity equation has a solution of the form
ρ(t) = ρ(0) exp(− ∫ t

0 ∇ · u dτ) in Lagrangian coordinates, then for long times, the
integral of the divergence of the velocity can be thought of as a sum of independent
random variables, each one being the integral over a time-period comparable to the
time scale associated with ∇ · u. Invocation of the central limit theorem would then
suggest that density is log-normally distributed. Other arguments, including self-similar



Fluctuations of thermodynamic variables in compressible turbulence 231

(a)
p.

d.
f.

100

10–2

10–4

10–6
–10 –5 0 5 10

(c)

p.
d.

f.

100

10–2

10–4

10–6
–10 –5 0 5 10

(e)

p.
d.

f.

100

10–2

10–4

10–6
–10 –5 0 5 10

(f) 100

10–2

10–4

10–6
–10 –5 0 5 10

(d) 100

10–2

10–4

10–6
–10 –5 0 5 10

(b) 100

10–2

10–4

10–6
–10 –5 0 5 10

FIGURE 6. Probability density functions of the logarithm of pressure (a,b with X = log(p)),
density (c,d with X = log(ρ)) and temperature (e,f with X = log(T)) for the same cases as in
figure 4. The arrows indicate increasing Mt. Standard Gaussian distribution (dashed lines) in
all plots for comparison.

fragmentation processes similar to those used to understand small-scale intermittency
in incompressible flows, have been put forth for isothermal flows, where a log-normal
behaviour for density fluctuations has also been observed (e.g. Padoan et al. 1997;
Federrath et al. 2008).

The p.d.f. of the logarithm of density, normalized with its mean and standard
deviation, is shown in figure 6(c,d). While negative fluctuations still show a Mach
number dependence similar to the p.d.f.s of density itself, positive fluctuations appear
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to be very close to log-normal (dashed line). This result appears to be qualitatively
consistent with Blaisdell et al. (1993), though their data correspond to a sheared flow
and was not in a stationary state – statistics were taken only at a single time instant.
In contrast, the present data are averaged over many time instants thus improving
statistical convergence, especially for the far tails of the p.d.f.s. The negative skewness
of the p.d.f. can be intuitively understood (Biskamp 2003) by considering that for
γ > 1, regions with high density will have higher temperatures, and pressure will
tend to counteract further compression. If γ < 1 (when γ is interpreted as a general
polytropic exponent), on the other hand, larger values of densities are possible since
temperature is reduced in high density regions and the counteracting effect of pressure
is much weaker.

While the argument for log-normality above is valid only for density, one can also
argue that the other two thermodynamic variables will also be log-normal, under some
conditions. As we will see below, positive density and pressure fluctuations appear
to be approximately related via an isentropic relation of the form p ∼ ργ . Thus, if
density is log-normal with parameters m and s2, it is not difficult to show that pressure
will also be log-normal with parameters γm and γ 2s2. Similarly, isentropic relations
would imply that temperature is related to density via a power law, and we would then
expect log-normality for temperature as well. The DNS data appear to support log-
normal tails for positive fluctuations of pressure and temperature as seen in figure 6.
Negative fluctuations possess wider tails and still retain a Mach number dependence.
In particular, as Mt increases, the negative side of the p.d.f.s narrows.

It is not possible to tell from the data whether the entire p.d.f. will approach
log-normal behaviour in the high-Mt limit: simulations at higher Mach numbers are
required for that purpose. However, one can still argue that this situation may be
expected. As Mt increases, more frequent and stronger shock-like structures (shocklets)
are expected. Consider the density at a particular location, and a shocklet moving
through that location. The change in density during this event α0 ≡ ρa/ρb (subscript
a and b refer, respectively, to time instants after and before the shock moves through
that location) can be calculated according to standard Rankine–Hugoniot relations, for
example. Similar considerations apply to expansion-like waves in the turbulence with
a corresponding density change. Further, assume that the dominant mechanism for
changes in density are due to these shock-like and expansion-like waves. Thus, the
density at any instant will be given by ρ/ρ0 = α0α1α2, . . . , where αi corresponds to
the density ratios with i denoting different events and ρ0 the initial density. We can
then take the logarithm to obtain log ρ/ρ0 = logα0 + logα1 + logα2 + · · · . Finally,
if the jumps αi are statistically independent (which would correspond to the case of
randomly distributed shocklets and expansions), the central limit theorem would imply
a log-normal behaviour for density. Note that in this case, because expansions and
compressions may possess different distributions, the Lindeberg version of the central
limit theorem is to be invoked (Feller 1971). Similar arguments can be put forth for
the log-normality of pressure and temperature.

It is important to recognize that the preceding argument results in log-normal
statistics for the three variables, independent of an isentropic relation between pressure
and density, for example. In contrast, the argument in Blaisdell et al. (1993) is valid
only for density, and log-normality follows if thermodynamic variables are related
according to power laws as in isentropic flows.

Since a critical element of this argument is that changes in thermodynamic variables
are predominantly due to shock-like or expansion-like events, a log-normal behaviour
for the entire distribution will likely be valid only in the high-Mt limit. At moderate
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Mt, shocklets are more rare but they may still represent a dominant contribution
to large fluctuations. Thus, one may expect the far tails of the p.d.f. to be log-
normal, with a core close to Gaussian. The latter can be justified if temperature, for
example, behaves as a passive scalar (see § 5) which is known to possess a Gaussian
p.d.f. (Mydlarski & Warhaft 1998; Watanabe & Gotoh 2004).

4. The isentropic assumption
In order to simplify theoretical approaches as well as create engineering models, it

is often useful to reduce the dependence of any thermodynamic variable from two (§ 1)
to one other variable. A widely used approach (at least away from walls or shock
waves), though not strictly valid due to the irreversible dissipative nature of turbulence,
is to assume that thermodynamic processes occur isentropically (Chandrasekhar 1951;
Erlebacher et al. 1990). Formally, conservation of energy at constant entropy would
imply, with the help of (1.1), that changes in density, pressure, and temperature are
related according to

p/〈p〉 = (ρ/〈ρ〉)γ = (T/〈T〉) γ
γ−1 . (4.1)

In this case it is possible to estimate the variance of density and temperature in terms
of the variance of pressure. (Note that to first order, this implies that pressure and
density fluctuations are related according to p′/〈p〉 ≈ γρ ′/〈ρ〉, Chandrasekhar 1951;
Kraichnan 1953). It is easy to rearrange (4.1) to obtain ρ ′2 = 〈ρ〉2((p/〈p〉)1/γ − 1)

2

which can then be expanded as a Taylor series about the mean state. The result is
ρ ′2 ≈ (〈ρ〉2/γ 2)(p∗)2− (γ − 1)(〈ρ〉2/γ 3)(p∗)3+O((p∗)4). After taking averages we find
that to leading order, 〈ρ∗2〉 = 〈p∗2〉/γ 2 or

〈ρ∗2〉/〈p∗2〉 = 1/γ 2, (4.2)

which is also included in figure 3. The DNS data, while in general not far from
this prediction, appear to approach 1/γ 2 only at high Mt. A similar calculation for
temperature results in

〈T∗2〉/〈p∗2〉 = (γ − 1)2/γ 2, (4.3)

which is seen to be in excellent agreement with DNS data at all Mt. This result
is consistent with the weaker Mt dependence observed in the p.d.f. and moments of
temperature fluctuations. It is also possible to obtain 2〈ρ∗T∗〉 by writing the product
ρ ′T ′ using the two expressions for density and temperature in (4.1) as a function of
pressure. Again, using Taylor series and averaging the result yields, to first order,

2〈ρ∗T∗〉/〈p∗2〉 = 2(γ − 1)/γ 2. (4.4)

As seen in figure 3, this result is also in agreement with DNS data especially at
high Mt.

While the ratio of variances appear to follow, at least approximately, relations
derived from the isentropic assumption, this does not confirm the fundamental
assumption embodied in (4.1), namely, that fluctuations are related as in (4.1) on
an instantaneous basis. If this were the case, then the quantity β ≡ (p/〈p〉)/(ρ/〈ρ〉)γ
would possess a Dirac delta distribution: fβ = δ(β ′) where β ′ = β − 〈β〉. In figure 7(a)
we show fβ at Rλ ≈ 100 and different Mach numbers. It is clear that while at low Mt

the p.d.f. is very narrow, it becomes increasingly wider as Mt increase. At Mt ≈ 0.6,
the p.d.f. is far from a Dirac delta and a range of values of β are observed. In
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FIGURE 7. (a) Probability density function of β ′/〈β〉 = (β − 〈β〉)/〈β〉 at Rλ ≈ 100 and
Mt ≈ 0.1, 0.3 and 0.6: dashed lines, (4.6) with best-fit γt. The inset shows the same p.d.f.s but
with logarithmic scales in the vertical axis. (b) Root mean square of β normalized by its mean:
dashed line, 0.1Mt

2. (c) Effective exponent γt. The symbols correspond to different Reynolds
numbers as in figure 1.

fact, the r.m.s. of β, which represents a quantitative measure of departures from
isentropic behaviour, presents a monotonic growth with Mt. As seen in figure 7(b)
this dependence can be well represented by 〈β∗2〉1/2 ≡ 〈(β ′/〈β〉)2〉1/2 ≈ 0.1Mt

2 with an
imperceptible Reynolds number dependence. We can also see that the most probable
value of β shifts to lower values compared to the mean at high Mt. The Reynolds
number effect on fβ , as on other p.d.f.s investigated (figure 4), is weak.

Because the p.d.f. of β is not a Dirac delta, fluctuations are not isentropic on
an instantaneous basis. However, it may still be possible to link one thermodynamic
variable with only one other. A common way to do so is with a polytropic exponent,
γt, such that

p/〈p〉 = (ρ/〈ρ〉)γt . (4.5)

Particular cases of interest can be obtained by setting γt = γ , γt = 1, or γt = 0, which
correspond to isentropic, isothermal and isobaric processes, respectively. Blaisdell et al.
(1993) argued that this quantity may not be well defined locally (since it is possible
to have ρ ′ = 0 while p′ 6= 0), but that it may still be useful as an approximation
in an average sense. The authors in that reference, therefore, used the polytropic
exponent defined as γt =

√〈p∗2〉/〈ρ∗2〉 following the first-order approximation of (4.5),
p′/〈p〉 = γtρ

′/〈ρ〉 suggested by Rubesin (1976). Our objective next is to assess to what
degree a polytropic exponent can be defined in a general way to capture fluctuations of
all intensities, not just those that provide a dominant contribution to the variance. For
this, we turn to the entire p.d.f. of β.

Using (4.5) we can write β = (p/〈p〉)(γt−γ )/γt . Clearly, if γt = γ , β is always
unity. If not, it is still possible to obtain fβ from fp. Using standard probability
concepts (Papoulis & Pillai 2002), we can write fβ(β) dβ = fp(p) dp. This implies
fβ(β) = fp(〈p〉βγt/(γt−γ ))|dp/dβ| where the derivative is, from the definition of β,
dp/dβ = 〈p〉(γt/(γt − γ ))(p/〈p〉)γ /γt . A simple yet realistic assumption is that the
p.d.f. of p is close to Gaussian. As seen in figure 4(a,b), while inadequate for large
fluctuations, it is in fact a good approximation for fluctuations not too far from the
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mean. In this case, one obtains

fβ(β)= γt

|γ − γt|
β
−γ
γ−γt√

2π〈p∗2〉1/2 exp
[
− 1

2〈p∗2〉
(
β

γt
γt−γ − 1

)2
]
, (4.6)

where, for a given condition, the only unknown is γt which can be found by a best-fit
of (4.6) to the DNS data. The result is also shown in figure 7(a). Equation (4.6)
seems to provide a good approximation overall, reproducing specific features such as
the asymmetry seen from DNS data. The resulting γt appears to increase mildly with
Mt (figure 7c) though γt ≈ 1.2 (which is between isentropic γt = 1.4 and isothermal
γt = 1) is a good approximation for the entire range of Reynolds and Mach numbers.
The result 1 < γt < γ is consistent with the shear flows of Blaisdell et al. (1993).
A closer look at the p.d.f. in logarithmic scales (inset), however, reveals that the
probability of larger fluctuations is underpredicted by (4.6).

We have also obtained fβ using a log-normal distribution for pressure, and similar
departures have been observed. This seems to indicate that a single exponent γt

cannot capture the range of fluctuations in realistic turbulent flows and a relation more
complex than (4.5) is necessary. This conclusion is also supported by the fact that the
value of γt obtained from variances (figure 3 or (4.2) and (4.3)) is different from that
obtained from (4.6) aimed at capturing the entire p.d.f.

Regardless of the particular form of fp(p), since β = (p/〈p〉)(γt−γ )/γt , one can expand
it using Taylor series as before, square the result and take averages to obtain the root
mean square of β which, to leading order, is

〈β ′2〉1/2 ≈ γ − γt

γt
〈p∗2〉1/2 ≈ γ − γt

γt

Aγ

3
Mt

2. (4.7)

Equation (3.5) was used in the last step. We can now see that the departures from pure
isentropic fluctuations grow as Mt

2 as the result of the power-law relation between
pressure and density and the scaling of pressure variance as in incompressible flows
(3.5). Consistency with the best-fit in figure 7(b) requires γt ≈ 1.2 (with A = 1.2).
However, a relation like (4.5) leads to an Mt-independent ratio of variances, identical
to those obtained for isentropic fluctuations (with γt instead of γ ) and presented in
figure 3. The conclusion is again that a single exponent does not seem to capture
accurately the relation between thermodynamic variables.

Finally, it is of interest to investigate under what conditions non-isentropic effects
appear. For this, we have computed the conditional expectation of β given pressure,
density and temperature, shown in figure 8 at Rλ ≈ 100. For purely isentropic
processes, the conditional expectation would be constant and equal to 1. At Mt ≈ 0.1
the data are approximately consistent with this result. Interestingly, at higher Mt, a
strong asymmetry emerges between positive and negative fluctuations of pressure and
density. In particular, while positive fluctuations remain closer to isentropic, negative
fluctuations present strong deviations as Mt increases. Large negative fluctuations,
however, become more rare as evidenced by the monotonic increase in the skewness of
pressure and density. Thus, the competition between stronger fluctuations (intuitively
leading to non-isentropic effects) and the shift to positive skewness (leading to positive
fluctuations which are more isentropic) may give rise to more complex behaviour
such as seemingly isentropic fluctuations at high Mt, as has indeed been observed in
figure 3. Further investigations are required in this direction.
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The arrows indicate increasing Mt.

5. Spectra of thermodynamic variables
At low Mt, compressible turbulence is expected to possess characteristics similar to

its incompressible counterpart. For example, as indicated in § 3, the p.d.f. of pressure
at Mt ≈ 0.1 is consistent with incompressible results in the literature. Another well-
known result for incompressible turbulence is the spectrum of pressure (Monin &
Yaglom 1975), which according to the classical theory of Kolmogorov (1941) presents
a universal form for wavenumbers k� 1/L (L is the integral length scale):

Ep(k)= Cp〈ε〉3/4ν7/4f (kη), (5.1)

where 〈ε〉 is the average energy dissipation rate and Cp is a constant of order one.
In the inertial range (1/L� k� 1/η where η ≡ (ν3/〈ε〉)1/4 is the Kolmogorov length
scale) it is expected that f (kη)→ (kη)−7/3, and the pressure spectrum assumes the
form

Ep(k)= Cp〈ε〉4/3k−7/3. (5.2)

In figure 9(a) we show the compensated pressure spectrum according to (5.2)
(such that inertial-range scaling would appear as a plateau at intermediate scales)
for Mt ≈ 0.1 and different Reynolds numbers. As expected, the data appear to
possess the universality observed at high wavenumbers in incompressible flows with
an emerging inertial-range scaling as Rλ increases. While one may be tempted to
read the value of Cp from the maximum seen at kη ≈ 0.2, this may not be entirely
justified if, as with the kinetic energy spectrum, a spectral bump emerges at the end
of the inertial range. This has indeed been responsible for overestimations of the
Kolmogorov constant for the energy spectrum in earlier DNS (Donzis, Sreenivasan
& Yeung 2010). The situation is clearly seen in figure 10(a), where we show
the compensated energy spectrum according to the classical E(k) = CK〈ε〉2/3k−5/3 in
the inertial range (Kolmogorov 1941). The inertial range is seen as a plateau at
intermediate wavenumbers followed by a spectral bump (bottleneck) with a maximum
around kη ≈ 0.1. The dashed line at CK = 1.6 corresponds to the value obtained
from incompressible flows (Donzis et al. 2010). In general, the energy spectra
from our compressible simulations shown in figure 10, are entirely consistent with
incompressible results in the literature. No inertial-range scaling can be unambiguously
observed for Rλ below 100. Mach number effects are imperceptible, though they are
likely to increase at higher Mt.
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FIGURE 10. (a) Normalized energy spectrum for Rλ ≈ 38, 60, 100, 170, 270 and 430 at
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dashed line at CK = 1.6 (Donzis et al. 2010). (b) Normalized dilatational energy spectrum
for Mt ≈ 0.1, 0.3 and 0.6 at the highest Rλ available for each case (i.e. 170, 430 and 170,
respectively). The symbols for different Reynolds numbers are as in figure 1.

For reference we also present in figure 10(b) the dilatational spectrum Ed(k)
obtained from the irrotational or dilatational component of a Helmholtz decomposition
of the velocity field (e.g. Kida & Orszag 1990) for Mt ≈ 0.1, 0.3 and 0.6 at the highest
Rλ available for each case. While inertial-range scaling is difficult to observe, we note
that the energy in the dilatational component is orders of magnitude smaller than the
total energy, though its contribution grows with Mt. This is consistent with the data in
table 1. We note that at very high wavenumbers (kη > 1) some well-known residual
errors (e.g. Watanabe & Gotoh 2007; Ishihara, Gotoh & Kaneda 2009) are seen,
though their contribution to total energy is negligible (the effect is greatly amplified in
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the figure by the multiplication by k5/3 due to the normalization) and have virtually no
effect on the quantities of interest here.

The spectral bump at the end of the inertial range has also been observed in
the pressure spectrum around kη ≈ 0.1–0.2 (Gotoh & Fukayama 2001), consistent
with our results in figure 9(a). However, the appearance of a k−7/3 scaling range is
apparent only at Rλ beyond ∼400–600 (Gotoh & Fukayama 2001; Tsuji & Ishihara
2003). We also include a horizontal line corresponding to Cp = 8.0 which would
mark the expected inertial-range scaling at higher Reynolds numbers in incompressible
turbulence (Gotoh & Fukayama 2001). Higher Reynolds numbers are clearly needed to
establish conclusively the appearance of k−7/3.

While we have observed similar results at Mt . 0.3−0.4, a different picture emerges
at higher Mt. In figure 9(b) we show the same normalized pressure spectrum at
Mt ≈ 0.6, where it is clear that incompressible scaling is inadequate. This may not be
surprising. As mentioned in § 3, at Mt ≈ 0.6 the variance of ‘compressible’ pressure
is of the same order as that for the ‘incompressible’ pressure and it is only the
latter which may be expected to follow incompressible scaling. If the former does not
scale as suggested by (5.1), then an increase in Reynolds number (through a decrease
in viscosity, for example) would imply a smaller denominator in the normalized
spectrum Ep/〈ε〉3/4ν7/4 and an increase in spectral levels at all wavenumbers, which
is what is observed in the figure. We have indeed observed that the spectrum of the
‘compressible’ pressure resembles closely the behaviour seen in figure 9(b) and is
therefore not shown.

It may thus be natural to expect the scaling of the pressure spectrum to be
increasingly influenced by thermodynamics instead of the classical hydrodynamic
processes in the inertial range as Mt increases. It is also interesting to observe that,
at high Mt, as the Reynolds numbers increases a scaling range develops with a slope
shallower than −7/3. In fact, at the highest Rλ available for Mt ≈ 0.6, the pressure
spectrum appears to have a k−5/3 scaling in the inertial range (the dashed line in
figure 9(b)). While k−5/3 has been reported for the pressure spectrum in earlier DNS of
incompressible turbulence (Cao et al. 1999; Gotoh & Rogallo 1999; Vedula & Yeung
1999), Gotoh & Fukayama (2001) showed that due to the low Reynolds numbers, the
inertial range scaling was confused with the spectral bump. From figure 9(b) it is clear
that the scaling region emerges at wavenumbers lower than that corresponding to the
bottleneck and is therefore considered true inertial-range scaling. As we discuss next, a
k−5/3 may not be completely unexpected.

For low Mach numbers, it is expected that temperature would behave as a passive
scalar. This is easily seen if the energy equation is written in terms of temperature
(in our perfect gas model T = e/Cv, where e is the internal energy per unit mass and
Cv the specific heat at constant volume). If fluctuations of thermodynamic quantities
are small, then one can expect fluctuations in molecular diffusivities to be small as
well. The resulting equation under these assumptions is a forced advection–diffusion
equation for T with the thermal diffusivity given by α = κ/ρCv (κ is the thermal
conductivity and density, as a first approximation, can be taken as its mean value)
and source terms of different types (mainly viscous dissipation and pressure–dilatation
correlation).

The problem of turbulent mixing governed by this type of advection–diffusion
equation has been studied extensively (Warhaft 2000). For scalars with diffusivities
of the order of, or larger than, the diffusivity of momentum (that is, Schmidt or Prandtl
numbers of order one or less, which is the case in our simulations), Obukhov (1949)
and Corrsin (1951) extended the theory of Kolmogorov (1941) with a cascade of scalar
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fluctuations similar to the classical energy cascade for the velocity field (Monin &
Yaglom 1975). Scalar fluctuations are injected or produced at the large scalar scales,
and through successive breakdowns into ever smaller scales the cascade proceeds
until fluctuations are ultimately dissipated at the smallest scalar scales. The average
rate at which the scalar (in our case temperature) fluctuations are destroyed by the
effect of diffusivity is readily found to be 〈εT〉 ≡ 2α〈(∇T ′)2〉. During this step-by-step
process the details of the large scales and how the fluctuations were generated by the
flow becomes weaker; the small scales, then, are believed to acquire an increasingly
isotropic and universal character.

In this picture, there is an intermediate range of scales (between the largest scalar
scales and the smallest diffusive scales), the so-called inertial-convective range, in
which the dynamics is not affected by either the production mechanisms (large scales),
or the viscous and diffusive processes (small scales). The scalar spectrum in the
inertial-convective range is then given by (Monin & Yaglom 1975)

ET(k)= CT
OC〈ε〉−1/3〈εT〉k−5/3, (5.3)

where CT
OC is the Obukhov–Corrsin constant for temperature fluctuations. Whereas, as

argued above, high Reynolds numbers are needed to observe a true inertial range in
the velocity field, an inertial-convective range for scalars is known to emerge at lower
Reynolds numbers than for the velocity field (Sreenivasan 1996; Yeung, Donzis &
Sreenivasan 2005; Donzis et al. 2010; Lee et al. 2012).

In figure 11(a) we show the compensated temperature spectrum ET(k) according
to (5.3) at Mt ≈ 0.1. The collapse of temperature spectra at high wavenumbers
reflects the universality at small scales predicted by the incompressible theory. As
Rλ increases, we see the usual widening of the inertial-convective range towards lower
wavenumbers. At the highest Rλ, inertial-convective scaling is already apparent as a
plateau at intermediate scales. Although the Obukhov–Corrsin constant read from the
figure (CT

OC ≈ 1.1) appears to be somewhat higher than that for incompressible flows
(Watanabe & Gotoh 2004), in general, our results are consistent with them.

Qualitatively similar results are observed at higher Mach numbers. In figure 11(b)
we show the temperature spectrum at Mt ≈ 0.6. The main effect of increasing Mt

appears to be confined at low wavenumbers. This increase of spectral levels at low
wavenumbers is consistent with the temperature variance growing with Mt (figure 2c)
because the variance of temperature is the integral of the spectrum (Parseval’s theorem)
and the dominant contribution is from low wavenumber modes. While small scales
appear to preserve Obukhov–Corrsin scaling, the increase of spectral levels at lower
wavenumbers results in a slight increase in CT

OC with the Mach number. However, it
is plausible that this effect will disappear at even higher Reynolds numbers, where the
inertial range widens and the effect of large scales on inertial and diffusive scales is
expected to weaken.

The density spectrum has been studied in different contexts, though perhaps
more thoroughly in astrophysics. A number of authors have suggested a k−5/3

spectrum based on different sets of assumptions and conditions, which include weakly
compressible flows, magnetohydrodynamic turbulence, and the interstellar medium (e.g.
Montgomery, Brown & Matthaeus 1987; Bayly, Levermore & Passot 1992; Dastgeer &
Zank 2005; Hunana & Zank 2010). Many of these studies, however, have focused on
isothermal turbulence, which makes the applicability of their results problematic in our
context. An alternative k−7/3 has also been suggested under certain conditions based on
the similarity between pressure and density (Bayly et al. 1992).
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FIGURE 11. Spectrum of temperature (a,b), density (c,d), and pressure (e,f ) at Mt ≈ 0.1
(a,c,e) and 0.6 (b,d,f ) compensated according to (5.3), (5.5) and (5.6), respectively. To
simplify notation we define Ψ (k) ≡ 〈ε〉−1/3〈εT〉k−5/3. The symbols for different Reynolds
numbers are as in figure 1. The arrows indicate increasing Rλ.

Although, as argued in § 4, large fluctuations depart from isentropic behaviour,
figure 8 also shows that moderate fluctuations may not be too far from isentropic.
Thus, even though estimation of high-order moments of thermodynamic variables
will probably be inaccurate if pure isentropic processes are assumed, second-order
statistics (including the spectrum) may still be accurately predicted. In this case,
according to (4.1), density and temperature fluctuations are related according to
ρ ′/〈ρ〉 ≈ (γ − 1)−1T ′/〈T〉 to first order. Therefore, the density spectrum can be written
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in terms of the temperature spectrum as

Eρ(k)= 〈ρ〉
2

〈T〉2
1

(γ − 1)2
ET(k). (5.4)

In the inertial-convective range, in particular, we can use (5.3) to obtain

Eρ(k)= CT
OC

〈ρ〉2
〈T〉2

1

(γ − 1)2
〈ε〉−1/3〈εT〉k−5/3. (5.5)

In figure 11(c) we show the density spectrum compensated according to (5.5). There
is an excellent collapse of Eρ(k) at high wavenumbers and a k−5/3 inertial-convective
scaling is also apparent at the highest Reynolds number. The horizontal dashed line
corresponds to CT

OC, which is seen to be slightly below the DNS data. Note that this
difference may be absorbed in (5.5) if a general polytropic process (4.5) is assumed
– the resulting expression would be the same equation (5.5), but with γt instead of
γ . In fact, a better agreement with the DNS data are obtained with γt < γ , which
is also consistent with the results based on single-point statistics in § 3. Figure 11(d)
shows the same compensated density spectrum at Mt ≈ 0.6. Mach number effects at
low wavenumbers are seen to be qualitatively similar to those for the temperature
spectrum.

Under the same isentropic assumption, pressure and temperature fluctuations are
related as p′ ≈ 〈p〉/〈T〉γ (γ − 1)−1T ′, which thus yields

Ep(k)= CT
OC

〈p〉2
〈T〉2

γ 2

(γ − 1)2
〈ε〉−1/3〈εT〉k−5/3. (5.6)

Figure 11(e,f ) shows the compensated spectrum for pressure according to (5.6). Just as
for density there is a good collapse of the DNS data at both low and high Mt.

It is important to note that while a k−5/3 scaling for temperature may indicate a
spectral cascade similar to passive scalars in incompressible turbulence, this conclusion
can be justified only by the similarity of the governing equations. This, however, is not
the case for density and pressure. The k−5/3 observed for Eρ(k) and Ep(k) appears to
be the result of the linearized relation with temperature and thus does not immediately
imply a classical spectral cascade of density and pressure due to nonlinear interactions
of different scales.

We conclude this section by noting that even though the different spectra appear
to follow k−5/3 in the inertial range, simulations at higher Reynolds numbers with a
wider range of scales are desired to provide a more accurate assessment of the spectral
slope, especially if small intermittency corrections in the inertial range (Sreenivasan &
Antonia 1997) are sought. This seems to be more important for pressure fluctuations
for which it is not possible, without some ambiguity, to rule out k−7/3 at low Mt. We
also note that at the highest Mach number (figure 11b,d,f ) the so-called dissipative
range (kη & 0.2) appears to possess higher spectral content than at low Mt, especially
for density and pressure. This may be indicative of the effect of small-scale features
such as shocklets, and its detailed investigation is deferred to a future publication.

6. Conclusion
Using a large DNS database of forced compressible turbulence we have investigated

the scaling of pressure, density and temperature fluctuations in an ideal gas. Variances
of thermodynamic variables grow with Mt as a power law steeper than 4 (the exponent
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that results from a direct extension of the known incompressible scaling of pressure
variance with the velocity variance, to compressible flows). The covariance between
density and temperature is a non-negligible contribution to the scaling of both the
mean as well as the variance of pressure. Temperature fluctuations are in general
smaller and less correlated to the other two quantities. While results at low Mt are
consistent with incompressible results, qualitative changes are observed at high Mt.
For example, the skewness of pressure and density changes from negative values
to positive with a transition between Mt ≈ 0.3 and 0.4. At low Mt, the p.d.f. of
pressure is consistent with incompressible results: a long negative tail and a positive
tail close to Gaussian. As Mt increases, the negative side narrows and the positive side
widens. A possible explanation is the increase in the amplitude of pressure fluctuations
combined with the positiveness of pressure which bounds fluctuations from below.
Similar conclusions apply to density and temperature.

We have further investigated a suggestion in the literature that density should obey
log-normal statistics. We found that while positive fluctuations are well approximated
by a log-normal distribution independent of Rλ and Mt, negative fluctuations still
retain an Mt effect similar to that observed in the p.d.f. of the variables themselves.
We argued that if one variable is log-normal, a polytropic relation will imply log-
normality for all of them. We have also discussed a physical mechanism leading
to log-normal statistics for all thermodynamic variables which does not rely on the
assumption of polytropic processes. The key element in the argument is the dominance
of compression and expansion waves randomly passing through a point, which, via a
central limit argument, results in a random process with log-normal statistics.

We have also investigated the extent to which fluctuations can be assumed to
be isentropic. Although some results can be approximated using isentropic relations,
departures from purely isentropic processes grow as Mt

2 (measured by the variance
of β). Positive pressure and density fluctuations tend to be more isentropic than
negative fluctuations. An alternative polytropic exponent was investigated and the
results suggest that a single exponent cannot represent fluctuations of all intensities. In
general, all our results indicate that Reynolds number effects are weak for single-point
statistics.

The DNS database has also been used to address the scaling of pressure, density and
temperature spectra. While spectra for the three thermodynamic variables of interest
here are consistent with a k−5/3 inertial range scaling, the pressure spectrum may
also be consistent with k−7/3 at low Mt, following known results in incompressible
turbulence. The k−5/3 scaling can be expected if temperature behaves as a passive
scalar and fluctuations of density and pressure are proportional to temperature,
an approximation valid for small fluctuations under a general polytropic relation
(including isentropic) between variables. An unambiguous determination of inertial-
range scaling will require even higher Reynolds numbers and resolutions.
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