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We report results from direct numerical simulation (DNS) of stationary compressible
isotropic turbulence at very-high resolutions and a range of parameters using a
massively parallel code at Taylor Reynolds numbers (Rλ) ranging from Rλ = 38 to
430 and turbulent Mach numbers (Mt) ranging from 0.1 to 0.6 on up to 20483 grid
resolutions. A stationary state is maintained by a stochastic solenoidal forcing at
the largest scales. The focus is on the mechanisms of energy exchanges, namely,
dissipation, pressure-dilatation correlation and the individual contributing variables.
Compressibility effects are studied by decomposing velocity and pressure fields into
solenoidal and dilatational components. We suggest a critical turbulent Mach number
at about 0.3 that separate two different flow regimes – only at Mach numbers above
this critical value do we observe dilatational effects to affect the flow behaviour in a
qualitative manner. The equipartition of energy between the dilatational components
of kinetic and potential energy, originally proposed for decaying flows at low Mt,
presents significant scatter at low Mt, but appears to be valid at high Mt for stationary
flows, which is explained by the different role of dilatational pressure in decaying
and stationary flows, and at low and high Mt. While at low Mt pressure possesses
characteristics of solenoidal pressure, at high Mt it behaves in similar ways to
dilatational pressure, which results in significant changes in the dynamics of energy
exchanges. This also helps explain the observed qualitative change in the skewness
of pressure at high Mt reported in the literature. Regions of high pressure are found
to be correlated with regions of intense local expansions. In these regions, the
density–temperature correlation is also seen to be relatively high. Classical scaling
laws for low-order moments originally proposed for incompressible turbulence appear
to be only weakly affected by compressibility for the range of Rλ and Mt investigated.
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1. Introduction
Understanding the effect of compressibility in turbulent flows is important in

many areas of scientific and engineering interest, such as the design of supersonic
vehicles, the mixing in high speed flows and astrophysical phenomena, among others.
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Common features that distinguish compressible flows from their incompressible
counterparts include the presence of fluctuations of thermodynamic variables and
the non-zero dilatation values of the fluid medium. Hence, in order to better
understand the nature of compressible flows, it is common to study the behaviour
of thermodynamic variables, the changes that the dilatation of fluid elements bring
about and how they are interrelated.

The general disposition towards accounting for compressibility effects has been
to decompose the velocity field into incompressible (solenoidal) and compressible
(dilatational) components based on Helmholtz decomposition. A similar form of
decomposition has been extended, though in a more ambiguous manner, to pressure.
Other attempts have also been made to isolate compressibility effects. For instance,
Kovasznay (1953) linearized the Navier–Stokes equations to obtain solutions as
superposition of vorticity, entropy and acoustic modes under the assumption that
the effects of compressibility are very small. Chu & Kovásznay (1958) extended
the analysis as a second-order approximation to account for stronger compressibility
effects. Dastgeer & Zank (2005) employed a similar approach and found that density
and temperature are anti-correlated for fluids in the interstellar medium. The linear
assumption, however, is very restrictive for a large class of engineering flows that
operate at high speeds where different high-amplitude modes interact and thus
superposition may not be always appropriate.

Thermodynamic variables, which are related by an equation of state, are typically
coupled to hydrodynamics leading to acoustic phenomena, such as, propagation
of sound waves. Depending on the level of compressibility, which is commonly
quantified by the turbulent Mach number (Mt = 〈uiui〉1/2/〈c〉, summation implied and
〈X〉 represents a suitably defined average of the variable X), different approximations
can be made that lead to distinct flow regimes. For instance, at low Mt, the acoustic
time scale is much smaller than the convective and viscous time scales leading to a
simplified set of equations (Erlebacher et al. 1990; Sarkar et al. 1991). This results
in a flow regime known as the low-Mach number quasi-isentropic regime, where the
flow is characterized by small dilatational fluctuations (Sagaut & Cambon 2008). At
higher levels of compressibility, the dilatational fluctuations may be substantial and
cannot be neglected. This flow regime, with stronger dilatational fluctuations but with
a Mach number still less than unity, is classified as the nonlinear subsonic regime
and is the principal regime of investigation here.

Because in compressible flows energy can be either in the form of kinetic or internal
energy, there has been significant interest in energy exchanges in compressible flows
in general (Miura & Kida 1995; Bataille, Zhou & Bertoglio 1997), shock turbulence
interactions (Lee, Lele & Moin 1993) and in reacting flows (Livescu, Jaberi & Madnia
2002). To examine the energy transfer processes, it is useful to take the dot-product of
the Navier–Stokes equations with the velocity vector u, and then average, which after
rearrangements results in an evolution equation for the mean turbulent kinetic energy,
〈K 〉. This equation, along with the mean internal energy (〈ρe〉) which expresses
conservation of energy can be written, for statistically homogeneous flows, as:

∂〈K 〉
∂t
= 〈p′θ ′〉 − 〈ε〉 + 〈 fiui〉, (1.1)

∂〈ρe〉
∂t
=−〈p′θ ′〉 + 〈ε〉 −Λ. (1.2)

The terms 〈p′θ ′〉 (primes in variables represent fluctuations around the mean) and 〈ε〉
are the mean pressure-dilatation correlation and dissipation rate, which as is clearly
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seen, represent exchange terms between the two energy modes. The term 〈 fiui〉 is the
mean energy injected into the system (to be described formally below) and Λ is the
amount of energy removed from the system. Equations (1.1) and (1.2) form the basis
of our present work. We study the scaling of the terms in these equations with Rλ
and Mt and the nature of energy exchange between the internal and kinetic energies.

One of the simplest frameworks to investigate these fundamental processes is in
homogeneous isotropic turbulence where wall effects and anisotropy are not present
(Ishihara, Gotoh & Kaneda 2009). Recent advances in computing have enabled
large-scale simulations of homogeneous compressible turbulence at grid resolutions
as high as 10243 (Petersen & Livescu 2010; Wang et al. 2012). Using some of the
most powerful supercomputers available today, we report results from simulations of
homogeneous forced compressible isotropic turbulence with grid resolutions ranging
from 643 to 20483 for Taylor Reynolds number ranging from 38 to 450 and Mach
numbers 0.1 to 0.6. The database used here comprises that used in Donzis &
Jagannathan (2013a) with some simulations extended for statistical convergence as
well as new simulations to cover more values of Mt especially at high resolutions. The
20483 simulation with a Taylor Reynolds number of 450 is, to the authors knowledge,
the largest simulation of forced compressible isotropic turbulence available in the
literature (Donzis & Jagannathan 2013a). Our focus in this work, however, is on
energy exchanges and the scaling of variables involved in this process such as
dilatation, pressure-dilatation, dissipation among others.

The rest of the paper is organized as follows. Background on the specific quantities
investigated in this work is given in § 2. The computational details and database are
described in § 3. Effect of compressibility on classical scaling relations is analysed
in § 4 followed by a discussion on equipartition of energy in compressible flows in
§ 5. Finally, statistics of pressure, its correlation with dilatation and energy transfer
dynamics between internal and kinetic energy modes are presented in § 6. Summary
and some final remarks are presented in § 7.

2. Background

For homogeneous compressible flows, the Helmholtz decomposition allows the
velocity field to be written as, u= us+ ud, where us is the solenoidal (∇ · us= 0) and
ud is the dilatational (∇× ud= 0) component of velocity. Compressibility effects have
typically been attributed to the often small yet non-negligible contribution from the
dilatation field (Lele 1994) which is zero in incompressible flows. Thus, in order to
understand the effects of compressibility, it is important to delineate the similarities,
differences and relative contributions of the solenoidal and dilatational modes and
their scaling with the Taylor Reynolds number (Rλ = 〈ρ〉〈uiui/3〉1/2λ/〈µ〉, where
λ ≡ 〈u2〉1/2/〈(∂u/∂x)〉1/2 is the Taylor length scale and 〈µ〉 is the mean dynamic
viscosity) and the turbulent Mach number, Mt. A fundamental aspect of turbulence
is the presence of a wide range of length scales, which typically ranges from the
integral scales to the so-called Kolmogorov scale (Kolmogorov 1941). For smaller
scales, dissipative effects are assumed to be dominant. Although the Kolmogorov
scale has been proposed for incompressible flows, it has been used extensively to
understand and characterize compressible flows. However, its scaling has not been
assessed systematically in these flows, where concerns may appear especially at high
Mt. We address this in § 4.

The mean energy dissipation rate in incompressible turbulence becomes independent
of the fluid viscosity at very high Reynolds numbers. This phenomenon, often known
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as dissipative anomaly and typically observed as the normalized dissipation rate
D ≡ 〈ε〉u3/L approaches a constant at high Rλ, is central to the dynamics of energy
cascade and has been supported by experiments and simulations over the past several
decades (Sreenivasan 1984, 1998; Kaneda et al. 2003; Donzis, Sreenivasan & Yeung
2005). Here, L ≡ π/(2u2)

∫ kmax

0 E(k)/k dk, is the integral length scale where kmax is
the highest resolved wavenumber in the simulation. Some theoretical investigations
(Shivamoggi 1995, 2005) explored the differences between the asymptotic behaviour
of D in incompressible and compressible turbulence. However, a systematic assessment
(numerical or experimental) of whether D asymptotes to a constant at high Reynolds
and Mach numbers, and if it does, the value of that constant has not been thoroughly
investigated. The mean dissipation rate, like velocity, can be decomposed into
solenoidal (〈εs〉) and dilatational (〈εd〉) components (Sarkar et al. 1991) and is
thus natural to inquire about the asymptotic behaviour of each at high Reynolds
numbers. It is important to note that 〈εs〉, although commonly-called incompressible
dissipation, may also be affected by compressibility effects in a compressible flow.
Thus, dissipative anomaly cannot be, in principle, assumed for either one of the
components of dissipation. In fact the model leading to 〈εd〉 ∼ M2

t 〈εs〉 by Sarkar
et al. (1991) which was based on a low-Mach number approximation, would suggest
a strong Mach number dependence but no Reynolds dependence. Thus if 〈εs〉 is
asymptotically independent of molecular transport coefficients, so will 〈εd〉 though
the asymptotic constant would depend on Mt. We address this in § 4.

The energy dissipation rate discussed above is an irreversible transfer from kinetic to
internal energy. There has been substantial interest in understanding, among all modes,
what the distribution of energy is. Sarkar et al. (1991) proposed an equipartition of
energy between the dilatational components of kinetic energy and potential energy
(due to pressure). Their formulation was based on root-mean-square (r.m.s.) quantities
to represent energies in different modes, and has been sometimes referred to as the
weak equilibrium hypothesis. A more stringent adaptation, the strong equilibrium
hypothesis, requires kinetic and potential energies to be in equilibrium with each
other for each wavenumber (Sagaut & Cambon 2008). Equipartition between acoustic
and vortical modes had been proposed analytically in the literature (Kraichnan
1955; Sarkar et al. 1991; Shivamoggi 1997) and has received some support, in the
weak-equilibrium sense, in decaying simulations (Lee & Girimaji 2013), and also
in shear flows (Bertsch, Suman & Girimaji 2012) for low Mt. However, only a few
studies have investigated this result for stationary compressible turbulence (Kida
& Orszag 1990; Miura & Kida 1995), which were also at low Reynolds number
(Rλ 6 40). While originally proposed to be valid for low Mt and high Rλ, our
simulations suggest that equipartition of energy seems to be a good approximation at
high Mt too in the case of stationary turbulence.

The other exchange term in (1.1) and (1.2), is the correlation between pressure
and dilatation, often known as pressure-dilatation correlation (p′θ ′). While the mean
dissipation rate represents a uni-directional energy transfer from kinetic to internal
energy modes, the pressure-dilatation correlation facilitates a bi-directional energy
exchange mechanism between them. It is also clear, from (1.1) and (1.2), that
any influence of compressibility in pressure fluctuations could bring about changes
in the pressure-dilatation correlation and consequently the way energy is exchanged,
affecting the global dynamics of the flow. We examine some existing scaling relations
for the solenoidal and dilatation components of pressure and identify departures, if
any. For example, the probability density function (p.d.f.) of pressure, is known to
be negatively skewed in incompressible flows (Holzer & Siggia 1993; Pumir 1994;
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Vedula & Yeung 1999). In an earlier study (Donzis & Jagannathan 2013a), we
found that at high Mt, the p.d.f. becomes positively skewed following a log-normal
distribution for positive fluctuations. Here, though our main concern is in energy
distributions and exchanges, we are also able to show that this qualitative change in
the p.d.f. of pressure is the result of large contributions of dilatational pressure.

While in incompressible turbulence the role of pressure is restricted to redistribution
of energy across components of momentum by upholding continuity, in compressible
turbulence pressure couples both thermodynamics and hydrodynamics. Due to this
coupling, it is natural to expect any change in hydrodynamics, like dilatation of
the fluid, to affect the thermodynamic fluctuations. For example, as we show
below, regions of high pressure and strong expansions tend to co-exist at high
Mt. Furthermore, unlike in incompressible turbulence, the correlation between regions
of low/high pressure and enstrophy decreases with increasing Mach number, and thus
the skewness of pressure at high Mt cannot be attributed to solenoidal motions.

The effects of strong fluid dilatation have been studied before (Samtaney, Pullin &
Kosovic 2001; Pirozzoli & Grasso 2004; Wang et al. 2011, 2012), where it is argued
that the appearances of these intense events tend to increase with Mt. These studies
also indicate as Mt increases strong compressions are more likely to occur than equally
strong expansions which we also quantify for a range of Rλ and Mt in § 6.3. While it
is generally believed that a strong compression of fluid increases the energy dissipation
(Lee, Lele & Moin 1991; Lee, Girimaji & Kerimo 2009) triggering transfers from
kinetic to internal mode, it is still not well established if a similar picture holds true
for equally strong expansions. Moreover, the net transfer between kinetic and internal
energies can change due to the contribution from pressure-dilatation correlation. We
discuss the net energy exchanges in regions of high positive and negative dilatation
in § 6.

3. Numerical simulations and database
3.1. Computational details

Turbulence is governed by the Navier–Stokes equations representing the conservation
of mass, momentum and energy,

∂ρ

∂t
+ ∂

∂xi
(ρui)= 0, (3.1)

∂

∂t
(ρui)+ ∂

∂xj
(ρuiuj)=− ∂p

∂xi
+ ∂

∂xj
(σij)+ ρfi, (3.2)

∂

∂t
(ρe)+ ∂

∂xi
(ρeui)=−p

∂ui

∂xi
+ ∂

∂xi

(
κ
∂T
∂xi

)
+ σijSij −Λ. (3.3)

Here, ρ is density, ui is the ith component of velocity, p is pressure, e is internal
energy per unit mass, T is temperature, κ is thermal conductivity and fi is the external
forcing. The viscous stress tensor, σij, and strain rate tensor, Sij, are given by,

σij =µ
(
∂ui

∂xj
+ ∂uj

∂xi
− 2

3
δij
∂uk

∂xk

)
, (3.4)

Sij = 1
2

(
∂ui

∂xj
+ ∂uj

∂xi

)
. (3.5)



674 S. Jagannathan and D. A. Donzis

Due to the continuous input of energy through f in the momentum equations, in order
to maintain a stationary state energy needs to be removed from the system. This is
accomplished through an additional term, Λ, in the energy equation (3.3). This can
be done in several ways as discussed in § 3.2. In order to close the set of equations,
we consider an ideal gas that follows the equation of state,

p= ρRT, (3.6)

where R is the gas constant of the fluid.
The equations are solved in conservative form using compact schemes (Lele

1992) with periodic boundary conditions in all three spatial directions. In order to
control aliasing errors, nonlinear terms are computed using a skew-symmetric form
(Blaisdell, Mansour & Reynolds 1993). Compact schemes have a very high resolving
efficiency compared to conventional finite difference schemes and, unlike spectral
schemes, are more amenable to more complex geometries involving different types
of boundary conditions. Formally, the derivative g′ of a function g is approximated
by,

∑m
j=−m αjg′i+j =

∑n
j=−n ajgi+j, where m, n define the stencil size and αj, aj are the

coefficients of the stencil for the derivative and function. This leads to a system of
linear equations of the form Mg′ = Ag, where M is a banded matrix. A family of
schemes is obtained by varying m and n. Specifically, for m= 2, n= 3 a tenth-order
scheme is obtained, which requires solving a penta-diagonal system. This can be
solved efficiently using highly optimized mathematical libraries in O(59N) operations
(Lv & Le 2008). The code, which leverages the spectral-like accuracy of compact
schemes, is parallelized using a hybrid MPI-OpenMP technique. The domain is
decomposed in two directions which enables the utilization of up-to N2 processors for
a problem size of N3. For problems of current interest where N = 2048, a maximum
of 20482 processing cores can be used which is beyond the largest supercomputing
facilities available currently, but may be available in so-called exascale computing.

The derivatives can be efficiently computed when one processor has all the data
along the direction in which the derivative is sought. This ‘pencil’ of data is initially
aligned, say, with x. All the terms involving derivatives in the x direction are
then computed. However, in order to compute the entire right-hand side of the
Navier–Stokes equations, derivatives along the other two directions are required.
There are two options for computing these derivatives: (i) by halo exchanges along
the processor boundaries, (Cook et al. 2005) or (ii) by transposition of data from x to
y and subsequently y to z pencils (Jagannathan & Donzis 2012). While both methods
have been shown to scale well at core counts of O(104), the latter is independent of
the order of accuracy and facilitates overlapping of communication and computation
and has been used for this work. Once the derivatives are computed, the variables
are marched in time using a third-order low-storage Runge–Kutta scheme. For the
following time step, the order of transposition is inverted to save one transpose per
variable every other step.

The code has shown very good scaling up to 524, 288 cores on grid resolutions up
to 40963. Small departures from ideal scaling are seen only at very large core counts,
where the memory footprint is of the order of cache size and hence latency effects,
which can be attributed to communication, tend to overwhelm the computational
time. Employing an additional level of parallelism based on shared memory alongside
message passing techniques has decreased the communication time by as much as
30 %. The implementation, benchmarks, and other diagnostic methods are described
in Jagannathan & Donzis (2012).
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3.2. Simulation database
Direct numerical simulations (DNS) at different Reynolds and Mach number are
required, for instance, to predict asymptotes at high Reynolds number and assess
effects of compressibility. We use a large database of homogeneous forced isotropic
compressible turbulence (Donzis & Jagannathan 2013b) to investigate the Reynolds
and Mach number scaling of solenoidal and dilatational components of several
quantities, effects of dilatation on thermodynamic quantities and the dynamics of
energy transfer between internal and kinetic modes. Some of the simulations in the
database have been extended for a longer duration to decrease statistical variability.

In order to maintain a stationary state, energy is injected at the large scales
through the momentum equations, a technique that has been used extensively in
incompressible (Eswaran & Pope 1988; Yeung & Brasseur 1991; Overholt & Pope
1998; Rosales & Meneveau 2005) and in compressible flows (Kida & Orszag 1990;
Petersen & Livescu 2010; Wang et al. 2012). Forcing in compressible turbulence,
however, has a much wider and interdependent parameter space because the forcing
parameters (mean temperature T0, number of forced wavenumbers κf , amplitude of
forcing, extent of solenoidal or dilatational forcing and time scale of forcing) are used
to control not only the Reynolds number but also the turbulent Mach number which
in turns depends on e.g. the mean temperature. Each of these parameters may affect
the flow variables simultaneously. For instance, if T0 is decreased, we might expect
Mt to increase (Mt ∝ u/

√
T), but it could also change µ thus affecting the Reynolds

number as well. This interplay of parameters compounded by constraints of achieving
(i) well-resolved simulations (kmaxη ≈ 1.5, to be shown later), (ii) the integral length
scale being a fraction of the domain size, and (iii) the maximum Rλ for a given grid
resolution, makes it a difficult problem to conduct a parametric variation of Rλ and
Mt. This may account for why investigations of forced compressible turbulence have
been scarce compared to incompressible turbulence.

We have implemented a low-wavenumber stochastic forcing based on Eswaran &
Pope (1988), that acts on wavenumbers (κ) inside a spherical shell of radius κf (κ 6
κf , κf = 3). Stochastic forcing for compressible flows have been used before, though it
has been limited to, e.g., a single wavenumber (Kida & Orszag 1990). In this work,
the forcing term in (3.2) is given by the vector

f =
∑
|k|<kf

f̂⊥(k)e
−ik·x, (3.7)

where f̂⊥(k) is the projection onto the plane perpendicular to the wavenumber
vector (which assures purely solenoidal forcing) of a random vector constructed
using six independent integrated Uhlenbeck–Ornstein random processes. The injected
energy cascades by nonlinear interactions and is dissipated at the small scales. Since
this increases the total energy of the system, one has to devise a mechanism to
remove energy to maintain a stationary state. We have implemented this in two
different ways: by removing energy (i) such that the mean internal energy is constant
and (ii) homogeneously and with a value equal to the average energy input at
every step. Consistent with previous studies (Wang et al. 2010) results are virtually
unaffected by the specific means in which energy is removed from the system. The
temperature dependence of viscosity and diffusivity (for scalars) follow a power-law
dependence with an exponent of 0.5, and the fluid is assumed to be an ideal gas with
a Prandtl number, Pr of 0.72. The relative difference between different temperatures
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FIGURE 1. P.d.f. of pressure fluctuations normalized at Rλ ≈ 60 for (a) Mt ≈ 0.1
(b) Mt ≈ 0.6. Symbols represent η/1x≈ 0.125 (E), 0.25 (@), 0.50 (A), 1.0 (♦).

dependencies of viscosity used in the literature is only a few percentage points (Wang
et al. 2010) and the conclusions here are, thus, unaffected by the specific choice of
the exponent as our own tests confirm.

While it is possible to force independently both the solenoidal and dilatational
mode of velocity, in this work, our focus will be in simulations where only the
solenoidal mode is forced. The main reason for this choice is to study dilatational
motions as they emerge from Navier–Stokes dynamics as opposed to those imposed
by external factors such as dilatational forcing. The DNS database, summarized in
table 1, consists of grid resolutions from 643 to 20483 with Taylor Reynolds number
ranging from 38 to 450 at different Mach numbers, Mt = 0.1, 0.2, 0.3, 0.4 and 0.6.
The table includes basic information about integral and Taylor length scales as well
as the ratio of dilatational to solenoidal kinetic energy, dissipation rate, and pressure.

To ensure accurate small-scale resolution, we have done convergence studies. We
first note that while strong compressions (so-called ‘shocklets’) may in principle
impose further constraints in resolution, it has been suggested that the most probable
shock thickness is of the order of the mean Kolmogorov scale (Samtaney et al. 2001).
Furthermore, even the strongest shocklets have been suggested to be comparable to the
strongest velocity gradients found in incompressible turbulence due to intermittency
(Donzis & Jagannathan 2013b). This suggests that the resolution criterion may not
be much stricter than in well-resolved incompressible DNS. Still, since these are
theoretical results based on strong assumptions, it is important to assess accuracy
based on numerical data.

It is also known that the resolution requirement typically depends on the quantity
of interest (Watanabe & Gotoh 2007; Donzis, Yeung & Pekurovsky 2008a). Since
our main interest is in the effect of thermodynamic variables and dilatation of the
flow, we consider pressure and higher-order moments of velocity gradients as our
convergence criteria. The p.d.f. of pressure is shown in figure 1 at Rλ ≈ 60 and
Mt ≈ 0.1 and 0.6 for different grid resolutions. While the shape of the p.d.f. differs
for different Mt (see § 6 for detailed analysis), the p.d.f.s themselves are converged
even at η/1x ≈ 0.25 showing little sensitivity to small-scale resolution. High-order
moments of velocity gradients, on the other hand, are more sensitive than other
quantities such as correlations and spectra (Donzis, Yeung & Sreenivasan 2008b). In
figure 2 we show these moments up to order 4. At low Mt (≈ 0.1), both third and
fourth-order moments are converged at η/1x ≈ 0.5. Indeed, we have verified that
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FIGURE 2. Normalized moments of longitudinal velocity gradients, X = (∂ui/∂xi)/3, at
Rλ≈60 for Mt≈0.1 (a,c) and Mt≈0.6 (b,d) for different η/1x. The error bars correspond
to a 95 % confidence interval.

moments up to order three are converged when η/1x ≈ 0.5 for all Mach numbers
in the database. We note, however, that the fourth-order moment at the highest Mt

(≈ 0.6) shows a slight increase at η/1x ≈ 1, which may suggest a more stringent
resolution requirement. For all other Mach numbers, however, fourth-order moment
are converged. Thus, for the results shown in this paper, a resolution of η/1x≈ 0.5
is found to be sufficient. This seems consistent with the results of Samtaney et al.
(2001) where it was estimated that the most probable shocklet thickness is a few
times larger than the Kolmogorov scale. Thus, resolving Kolmogorov scales would
also provide enough resolution for shocklets. The convergence seen in figure 2 and
other conditions in our database seems to support this conclusion.

3.3. Solenoidal and dilatational components
As mentioned before, the velocity field is decomposed into solenoidal and dilatational
field, for which we will use superscripts s and d respectively. This decomposition is
unique for homogeneous flows. Since us and ud are orthogonal to each other on the
average (〈us · ud〉 = 0), respective kinetic energies are related as 〈K 〉 = 〈K s〉 + 〈K d〉
(Kida & Orszag 1990; Lele 1994), where the solenoidal and dilatational components
of mean kinetic energy is given by 〈K s〉 = 〈ρus

i us
i/2〉 and 〈K d〉 = 〈ρud

i ud
i /2〉, with

summation implied on i. Using Reynolds decomposition, we decompose a random
variable X into mean 〈X〉 and fluctuations X′, such that X = 〈X〉 + X′. For quantities
with zero mean, the primes are dropped for simplicity in notation. Two examples are
the velocity field u and forcing term f .

Sarkar et al. (1991) proposed a way to decompose 〈ε〉 into a solenoidal (〈εs〉) and
dilatational (〈εd〉) component by recasting them in terms of fluctuating vorticity (ωi)
and dilatation (θ ). Here we use

〈εs〉 = 〈µωiωi〉, 〈εd〉 = 4
3 〈µθ 2〉. (3.8a,b)

Note that if the fluctuations in µ are small, one can write (Sarkar et al. 1991)
〈µωiωi〉 ≈ 〈µ〉〈ωiωi〉 and 〈µθ 2〉 ≈ 〈µ〉〈θ 2〉.
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Similarly, the fluctuating pressure can be decomposed into a solenoidal pressure
satisfying the incompressible pressure Poisson equation,

∇2ps = 〈ρ〉∂us
i

∂xj

∂us
j

∂xi
, (3.9)

and the dilatational pressure, pd = p′ − ps, defined as the difference between the
total pressure and solenoidal pressure fluctuations (Sagaut & Cambon 2008). To
avoid confusion, it is important to note that we use here the term total pressure
fluctuations to denote p′ (the sum of solenoidal and dilatational components) and not
the stagnation pressure, which is sometimes also called total pressure.

4. Classical scaling in compressible turbulence
A number of results strictly valid only for incompressible flows have been used

nonetheless in compressible flows. This includes basic tenets of the classical
phenomenology of Kolmogorov (1941). While at low Mach numbers one can
expect similarities between compressible flows and strictly incompressible flows,
the departures (if any) from classical scaling have not been studied systematically.
These include the scaling of Kolmogorov length and velocity scales and dissipative
anomaly. Concerns about the validity of incompressible concepts may be justified
by the appearance of very high-speed regions in the flow. For example, while Mt is
always less than unity, local values of the Mach number could be as high as five
times Mt and well above 1.0. These intense fluctuations are extremely localized in
space, but occur consistently in time. We investigate the possibility of such extreme
events affecting the statistics of quantities mentioned in the following subsections.

4.1. Dissipative anomaly
A particular topic in incompressible turbulence that has accrued several decades of
research is the phenomenon of dissipative anomaly, the concept that at sufficiently
high Reynolds number and away from walls, the mean energy dissipation rate
becomes independent of the fluid viscosity (Sreenivasan 1984, 1998; Kaneda et al.
2003; Donzis et al. 2005). Following the original work of Taylor (1935), the
dissipation rate per unit volume 〈ε〉 can be estimated from large scale characteristics
of the flow as:

〈ε〉 =D〈ρ〉u3/L, (4.1)

where L is the integral length scale and u the r.m.s. velocity (u= (〈uiui/3〉)1/2). Since
density is constant in incompressible flows, one can instead use the dissipation rate
per unit mass 〈ε〉 = 〈ε/ρ〉 = 〈ε〉/〈ρ〉, a relation clearly not satisfied in compressible
flows. The brackets around ρ are here unnecessary since ρ is constant but are kept for
consistency in notation when used for compressible flows. Dissipative anomaly is then
assessed by plotting the normalized energy dissipation rate D = 〈ε〉L/u3 against the
Reynolds numbers. At high enough Reynolds numbers, D approaches an asymptotic
value supporting thus the independence of the dissipation rate on viscosity.

We now consider (4.1) for compressible flows. The limited results that are available
in literature suggest that at low Mt the influence of compressibility on the asymptotic
value of the normalized dissipation is small though results are for isothermal flows
(Pearson et al. 2004), or flows with artificial dissipation added by the numerical
scheme and an equation of state independent of temperature (Schmidt, Hillebrandt &
Niemeyer 2006).
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FIGURE 3. Variation of (a) normalized mean energy dissipation rate (D), and (b) its
dilatational component (Dd) with Mt. Symbols for different Mach numbers in (a)
correspond to Mt ≈ 0.1 (E), 0.2 (@), 0.3 (A), 0.4 (♦), and 0.6 (C), and for different
Reynolds numbers in (b) correspond to Rλ ≈ 38 (E), 60 (@), 100 (A), 160 (♦), 270 (C),
and 450 (B).

Figure 3(a) shows D = 〈ε〉L/u3〈ρ〉 versus Rλ from our database. Qualitatively, the
figure is very similar to that in incompressible flows (Sreenivasan 1984; Donzis
et al. 2005). In particular, there is a decrease of D with Rλ for low values of Rλ,
but approaches an asymptotic value at high Rλ. The asymptotic state appears to be
reached at Rλ ≈ 100 consistent with previous incompressible results (Sreenivasan
1984; Donzis et al. 2005). For Mt ≈ 0.3, the asymptotic value of D is around 0.43.
For higher Mt, the achievable Rλ is not as high making it difficult to assess with
certainty the value at the asymptotic state.

The phenomenological underpinning of dissipative anomaly is that large scales
set the rate at which energy is transferred through increasingly smaller scales
until viscosity is effective and dissipates this energy. A straightforward extension
to compressible flows would indicate that D approach a constant too at high Rλ,
which is approximately, what is seen in figure 3. However, in compressible flows, the
mean dissipation could be decomposed into solenoidal and dilatational component,
and hence, a similar asymptotic constant can be established for each (Ds, Dd). Thus,
if dissipative anomaly holds, both components should approach an asymptotic state at
high Rλ. Since Ds is just the difference between D and Dd, we show Dd in figure 3(b)
as a function of Mt. Though the overall contribution from Dd is less than 5 % for the
cases considered, there is a dramatic increase in its relative contribution for Mt > 0.3.
Thus, one can expect the asymptotic value of D to depend on Mt though it may be
noticeable only at much higher Mt. For the range of Mt considered in this paper,
D is only weakly affected by compressibility. Simulations at increasingly higher
Reynolds and Mach numbers are needed to reach an unambiguous conclusion about
the dependence of the asymptotic constant on Mt.

4.2. Velocity and length scales
Kolmogorov (1941) defined characteristic scales for the smallest scales of motion. The
well-known Kolmogorov length, velocity and time scales are, respectively,

η≡ (ν3/ε)1/4, uη ≡ (νε)1/4, τη ≡ (ν/ε)1/2. (4.2a−c)
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(a) (b)

FIGURE 4. Scaling of (a) Taylor micro scale (λ) and integral length scale (L) and (b)
Kolmogorov velocity scale (uη). Dashed lines indicate classical Kolmogorov scaling for
incompressible turbulence: λ/η ∼ R1/2

λ , L/η ∼ R3/2
λ , u/uη ∼ R1/2

λ . Symbols for different Mt
as in figure 3(a).

Since this applies to incompressible flows, the kinematic viscosity ν is constant (and
thus brackets are omitted) and ε is the mean energy dissipation rate per unit mass.
These relations lead to a simple scaling law if the normalized mean energy dissipation
rate asymptotes to a constant (εL/u3=D, as shown in § 4.1). Substituting ε∝ u3/L in
(4.2) and after some algebra, we obtain

λ

η
∼ R1/2

λ ,
L
η
∼ R3/2

λ ,
u
uη
∼ R1/2

λ , (4.3a−c)

where L is the integral length scale.
The extension of (4.2) to compressible flows, though typically straightforward,

is not unique. Since ν varies in space and time, one could devise dimensionally
consistent alternatives. For example, one could use 〈µ〉/〈ρ〉 or 〈µ/ρ〉. Similarly, the
energy dissipation rate per unit mass in a compressible flow can be taken as 〈ε〉/〈ρ〉
or 〈ε/ρ〉. Indeed, one can find different definitions using these alternatives in the
literature (Shivamoggi 1995; Samtaney et al. 2001; Wang et al. 2011). Although we
have found that, for the range of parameters studied here, there is no appreciable
difference between the different forms, we prefer to proceed by extending Kolmogorov
(1941) reasoning to compressible flows. If we assert that small scales are independent
of large scales and will only depend on the rate at which kinetic energy is converted
into heat 〈ε〉, the mean viscosity 〈µ〉 and the mean density 〈ρ〉, then dimensional
analysis yields:

η≡ (〈µ〉3/〈ε〉〈ρ〉2)1/4, uη ≡ (〈µ〉〈ε〉/〈ρ〉2)1/4, τη ≡ (〈µ〉/〈ε〉)1/2. (4.4a−c)

With these definitions and 〈ε〉 ∝ 〈ρ〉u3/L, we obtain again (4.3).
In figure 4(a) we plot the non-dimensionalized Taylor micro-scales and integral

length scale. While the scaling of Taylor micro-scales conform very well to that of
the proposed scaling (λ/η∼ R1/2

λ ) without any Mt dependence, the scaling of integral
length scales deviate slightly from R3/2

λ at low Reynolds number. This is not surprising
given that Kolmogorov scaling has been proposed only when the Reynolds number
is high enough. However, even at high Reynolds numbers, a close inspection of the
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data seems to suggest a slight correction with the data presenting a shallower power
law. Results at higher Reynolds numbers are needed to unambiguously determine
this departure. In any case, for turbulent Mach numbers up to 0.6, the effect of
compressibility on low order quantities tend to be weak as is also seen in figure 4(b)
for Kolmogorov velocity scale.

5. Equipartition of energy in homogeneous compressible turbulence
The phenomenon of equipartition is often associated with non-dissipative linear

waves where the sum of potential and kinetic energy is constant. But in turbulence,
where nonlinear as well as dissipative effects are observed at any Reynolds number,
such distribution of energy, in principle, cannot a priori be justified. However,
Kraichnan (1955) observed that for an adiabatically compressible fluid at low Mach
numbers, the vorticity and acoustic modes are coupled by the nonlinear terms and
drive the system to an equilibrium state. Similarly, Sarkar et al. (1991) decomposed
the Navier–Stokes equations into compressible and incompressible parts and suggested
equipartition at low Mt for the compressible component.

The concept of acoustic equilibrium could be interpreted in strong or weak forms. In
the former, the equilibrium between dilatational components of pressure and velocity
is established for all wavenumbers, while in the latter they are expected to be valid
only in a global average sense (Sagaut & Cambon 2008). The equipartition functions
Fw and Fs for weak and strong forms respectively are then (Hamba 1999; Sarkar et al.
1991),

Fw〈pdpd〉 = γ 2M2
t χ〈p〉2, (5.1a)

FsEpd = 〈ρ〉2〈c〉2Eud . (5.1b)

Here, Epd and Eud are the spectra of dilatational pressure and velocity respectively, and
χ =〈K d〉/〈K 〉 is the fraction of mean dilatational kinetic energy to the mean kinetic
energy in the system. For perfect equipartition, one expects Fs = Fw = 1.

The equipartition of energy in the weak sense, though theoretically derived for the
low-Mach number subsonic regime, has found support at Mt as high as 0.5 in DNS
of decaying turbulence (Sarkar et al. 1991). In these flows, the initial transient are
thought to be dominated by acoustics. Viscous and convective effects are expected
to play a larger role at later times. In stationary flows with external forcing, on the
other hand, it is difficult to associate a physical time at which each of these processes
dominate independently. It is likely that both the acoustic and turbulent phenomena
occur concurrently at different time scales based on the Mach number. At higher
levels of compressibility, the coupling between the acoustic and vorticity modes is also
enhanced and could possibly distort the equipartition. In general, the existing literature
lends support to equipartition only in the low-Reynolds low-Mach number limit (see
e.g. Kida & Orszag 1990; Miura & Kida 1995). Due to its widespread application and
usefulness in turbulence modelling, we now investigate the validity of equipartition
with emphasis on its Mt scaling.

Figure 5(a) shows the variation of the ensemble-averaged equipartition function Fw
with Mt. For Mt < 0.3, the data is scattered around Fw ≈ 1, with significant Reynolds
number dependence. Beyond Mt ≈ 0.3, Fw is much closer to unity with weak Rλ
effects. The scatter in the data may be directly related to the scaling of normalized
dilatational pressure (〈pdpd〉1/2/〈p〉 ≈M2

t ) which is discussed in § 6. As will be shown
in that section, while at high Mt the data conforms to this scaling, at low Mt there is
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FIGURE 5. Equipartition in the weak and strong sense. (a) Variation of equipartition
function Fw for different Mt according to the weak-equilibrium hypothesis. Dashed line
indicates Fw = 1. (b) Spectra of dilatational components of pressure Epd(k) (grey) and
velocity 〈ρ〉2〈c〉2Eud(k) (black) at Mt ≈ 0.1 (dash-dotted), 0.3 (dash), 0.6 (solid).

considerable deviation. This seems to indicate the existence of a difference between
decaying and forced turbulence. In decaying flows, during the acoustic transient period,
dilatational pressure plays a crucial role in bringing the system towards equipartition
(Sarkar et al. 1991). As we will show in § 6, the role of dilatational pressure in forced
flows is not dominant unless Mt increases beyond a threshold.

Miura & Kida (1995) observed Fw to be slightly in excess of unity (Fw ≈ 1.15)
in their simulations of forced compressible turbulence at Rλ ≈ 35 and Mt ≈ 0.14.
In our simulations as well, Fw is slightly greater than unity. This small difference
between the current DNS and the theoretical value of unity from Sarkar et al. (1991)
may not be unexpected if one recalls their assumptions. First, the theory assumes
isentropic fluctuations which is not strictly correct (Donzis & Jagannathan 2013a).
Second, the decomposition of the velocity field does not correspond to the Helmholtz
decomposition as the one used here. While still not strictly equal to unity, our DNS
data support an approximate balance between the dilatational motions and pressure.

In real flows, one may be more interested in the total pressure instead of its
solenoidal or dilatational component in which case one can recast the non-dimensional
parameter, Fw, in terms of total pressure. It has been argued (Sarkar et al. 1991;
Sagaut & Cambon 2008) that this would lead to FT =〈K d〉γ 〈p〉〈ρ〉/〈p′2〉. In figure 6,
we show FT which would approach unity if equipartition is achieved. While lower
values of Mt are necessary to be more conclusive, the data suggest an asymptotic
state at very low Mt when the ratio is close to zero with a weak Reynolds-number
effect. We note that this is in contrast with decaying sheared flows starting from
purely solenoidal fields (Bertsch et al. 2012). This may again be due to the differing
role of dilatational pressure in both forced and decaying flows. Around Mt ≈ 0.3,
there is a sharp increase in FT followed by a plateau at Mt ≈ 0.6 with the value of
FT around 0.70. This transition in flow statistics at Mt ≈ 0.3 was also observed in
figure 3(b).

In general the weak form of equipartition does not imply the strong form. In
particular, since Fw is based on r.m.s. quantities, most of its contribution comes from
large scales. The strong form, on the other hand, considers scale-by-scale equipartition
based on the spectral content of dilatational velocity and pressure. In figure 5(b) we
show the spectra Epd and Eud (normalized by 〈ρ〉2〈c〉2) for different Mt at Rλ ≈ 160.
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FIGURE 6. Equipartition function Fw recast into FT using the weak equilibrium hypothesis.
Symbols for different Reynolds numbers as in figure 3(b).

At low Mt, the spectral content of dilatational pressure is smaller than that of the
dilatational velocity at all scales, with a stronger effect at high wavenumbers. Beyond
the threshold Mt≈0.3, Epd and 〈ρ〉2〈c〉2Eud begin to overlap over an increasingly wider
range of scales. At Mt ≈ 0.6 the two spectra almost collapse at all wavenumbers.
While the effect of forcing may be in the large scales either to help or distort
equipartition, its effect on small scales is expected to be weaker as the Reynolds
number is increased. Thus, the data suggest that at high Reynolds numbers and Mach
numbers beyond Mt≈ 0.3, the strong acoustic equilibrium hypothesis is approximately
valid for stationary flows. We note that these conclusions are for scales larger than
Kolmogorov scale, and are thus unaffected by the well-known (Watanabe & Gotoh
2007; Ishihara et al. 2009) residual errors at very high wavenumbers (kη > 1). We
also note that at the largest scales, the creation of dilatational motions may be related
to the stochastic nature of the forcing. For example, one may expect that the random
changes in direction of large-scale structures, though slow for this type of forcing,
may generate pressure waves associated with dilatational motions. Thus, just as in
incompressible flows, there is no expectation of a universal behaviour at the large
scales.

In summary, for forced stationary flows, the weak form of the equipartition function
Fw tends to unity at high Mt. FT , on the other hand, does not approach unity (though
it is not too far from it) indicating a non-negligible contribution from solenoidal
pressure even at high Mt. The (strong) equipartition function Fs, is seen to be valid
also at high Mt in stationary flows. We emphasize that the dilatational motions present
in the flow are the result of the dynamics of the Navier–Stokes equations and not
imposed externally in the form of initial conditions, boundary conditions or nature of
the forcing.

5.1. Consequences of equipartition: scaling of dilatational components
One of the results from the asymptotic analysis of Erlebacher et al. (1990) and Sarkar
et al. (1991) is the model for the dilatational dissipation rate in the low Mach-number
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(a) (b)

FIGURE 7. Ratio of dilatational to solenoidal (a) dissipation (b) turbulent kinetic energy.
Symbols for different Reynolds numbers as in figure 3(b). Solid line in (a) corresponds
to best-fit curve M4.1

t and dash-dotted line in (b) corresponds to a representative M2
t and

M4
t curve.

regime (〈εd〉 ∝M2
t 〈εs〉). This result was derived by assuming equipartition in the form

Fw ≈ 1. In addition, this model assumed the ratio of solenoidal and dilatational
Taylor scales to be a constant, which as we show below, follows a power law in Mt
instead. Note that based on the definition of Taylor scales and assuming that density
is weakly correlated with the velocity field, we can show that the ratio of solenoidal
to dilatational Taylor scales varies as, λs/λd ∼ √(〈K s〉/〈K d〉)(〈εd〉/〈εs〉). It can
be clearly seen that this would become independent of Reynolds and Mach number
only if 〈K d〉/〈K s〉 and 〈εd〉/〈εs〉 scale similarly. As will be shown momentarily,
they scale differently and a correction factor has to be incorporated while modelling
λs/λd.

Available results on the scaling of dissipation appear not to be in agreement with
each other. Bertoglio, Bataille & Marion (2001) suggested that 〈εd〉/〈εs〉 also scales
as M2

t based on an EDQNM analysis at low Mach numbers. Ristorcelli (1997) and
Fauchet & Bertoglio (1998), on the other hand, proposed M4

t . It is worth noting here
that the scaling exponents predicted by Erlebacher et al. (1990) and Ristorcelli (1997)
are based on different assumptions. While the former decomposed the compressible
problem based on convective and acoustic time scales, the latter assumed that the
length scales (inner and outer scales) are disparate. However, both these analyses
were made for low Mt. An even steeper dependence, as M5

t , at high turbulent Mach
numbers has also been proposed using EDQNM (Sagaut & Cambon 2008). Other
relations have also been put forth in the literature as 〈εd〉∝ 〈εs〉F(Mt), where different
relations are possible based on the definition of F(Mt) (Zeman 1990; Blaisdell &
Zeman 1992). Some of these results have been supported by simulations of decaying
compressible turbulence at low Rλ and Mt though conclusions may be dependent on
specific features of the particular initial conditions used (Vreman, Sandham & Luo
1996; Ristorcelli 1997). One way of removing the dependence on initial condition
is to force the simulation by adding energy to the large scales so that a statistically
stationary state is achieved. This is the case in the present study.

Consider first the ratio of solenoidal to dilatational dissipation in figure 7. The
DNS appears to suggest two different scaling ranges depending on Mt with the
transition occurring around Mt≈ 0.3. While the contribution of dilatational dissipation
is negligibly small at low Mt, it increases sharply beyond Mt > 0.3, following a steep
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FIGURE 8. Ratio of solenoidal and dilatational Taylor scales. Symbols for different
Reynolds numbers as in figure 3(b). Dash-dotted lines correspond to a representative M−2

t
and M0.9

t .

power law, 〈εd〉/〈εs〉 ∼M4.1
t for the range of Mt investigated. This indicates that the

contribution of dilatational motions to dissipation grows quickly as Mt increases, as
has been noted in figure 3(b). Stronger fluctuations of local values of dilatational
dissipation at high Mt may also indicate stronger intermittency, a phenomenon with
important implications in shock-turbulence interactions (Donzis & Jagannathan 2013b).
The Reynolds number effect on the ratio of the different components of dissipation
is seen to be very weak.

Scaling laws for the ratio of dilatational and solenoidal kinetic energy, 〈K d〉/〈K s〉,
have also been proposed in the literature. For example, Sarkar et al. (1991) suggested
a M2

t dependence at low Mt based on an asymptotic analysis while Fauchet &
Bertoglio (1998) proposed M4

t and M2
t ReL scaling using an EDQNM approximation

with different decorrelation functions where ReL is the integral scale Reynolds number.
Figure 7(b) shows this ratio from our DNS database. Similar to the scaling of ratio
of dissipation rates, we can distinguish different scaling regimes at low and high Mt

that vary as M4
t and M2

t respectively. Their dependence on Reynolds number becomes
weak at high Mt.

We can now use the scaling of dissipation and kinetic energy to obtain the ratio
of Taylor scales. Since both 〈εd〉/〈εs〉 and 〈K d〉/〈K s〉 appear to be independent of
Rλ for Mt > 0.3, the ratio of solenoidal and dilatational Taylor scales should also be
independent of Rλ at high Mt. Using the best fits for 〈εd〉/〈εs〉 and 〈K d〉/〈K s〉 at
high Mt, we obtain λs/λd ∼√M4.1

t /M2.2
t ∼M0.9

t . This result, along with DNS data is
shown in figure 8. Again, two qualitatively different regimes can be identified with a
transition around Mt ≈ 0.3. For low Mach numbers we see a strong Reynolds number
dependence and a decreasing trend with Mt. This is due to the Reynolds number
dependence seen at low Mt in the scaling of 〈K d〉/〈K s〉. This dependence weakens
beyond Mt≈ 0.3 eventually becoming almost independent of Rλ at Mt≈ 0.6. A best-fit
power-law for Mt > 0.3 shows a M1.2

t scaling which is close to the prediction.
From figure 8 we conclude that the DNS data do not support a constant λs/λd as

assumed by Sarkar et al. (1991). However, the latter considered only decaying flows
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and, thus, does not account for the effect of forcing. As we have already shown
above, statistically steady forced flows present significant differences, for example in
equilibrium states (equipartition), compared to decaying flows.

6. Pressure statistics
6.1. Solenoidal and dilatational pressure scaling

Considering that equipartition appears to depend on Rλ and Mt, it seems important
to understand not only total pressure, but in particular the solenoidal and dilatational
components as mentioned in § 3.3. Though different decompositions are possible
(Sarkar 1992), (3.9) is widely used in turbulence modelling. Since by definition the
solenoidal pressure satisfies the incompressible pressure Poisson equation, we can
expect the relation, ps

rms ∼ 〈ρ〉us
rmsus

rms, to be only weakly affected by Mach number
effects (Erlebacher et al. 1990).

Figure 9(a) shows that indeed ps
rms scales as 〈ρ〉〈us

i us
i 〉 with a weak Mach number

dependence. For Mt ≈ 0.1 the high Reynolds number asymptotic constant is around
0.88 close to the incompressible case at 0.91 (Donzis, Sreenivasan & Yeung 2012).
However, at the highest Reynolds number available for Mt ≈ 0.3 (Rλ ≈ 450), the
asymptotic constant decreases to around 0.82. While clearly data at higher Reynolds
number are needed to establish asymptotes conclusively, small trends with Mach
number appear to be present.

One could extend the incompressible scaling to total pressure fluctuations,
prms∼〈ρ〉u2, and normalize by the mean pressure to obtain prms/〈p〉∼ 〈ρ〉u2/〈ρ〉R〈T〉∼
u2/c2 ∼M2

t . Recent numerical simulations suggest that prms/〈p〉 grows slightly faster
with Mt, as M2.2

t (Donzis & Jagannathan 2013a). This departure can be ascertained by
exploring the scaling of the individual components of pressure. When ps

rms is scaled
by the mean pressure, as shown in figure 9(b), we see excellent agreement with M2

t
and almost no Reynolds number dependence. However, when the dilatational pressure
is scaled similarly (in figure 9(c)), a steeper exponent is observed at low Mt (close
to 4.0) while an emerging M2

t scaling is seen for Mt > 0.3. The higher exponent at
low Mt may explain the minor deviation seen in Donzis & Jagannathan (2013a) only
if dilatational pressure provides a non-negligible contribution to total pressure at low
Mt. As we show momentarily, however, this is not the case.

In order to assess the relative contributions of the dilatational and solenoidal
pressure, the ratio of their r.m.s. values is shown in figure 10(a). While at low Mt,
pd

rms is only approximately 10 % of ps
rms, there is a sharp increase around Mt ≈ 0.3.

Beyond Mt ≈ 0.3, the ratio remains close to 1.0, with a weaker Reynolds number
dependence than at lower Mt. Here, we note again the qualitative change in behaviour
seen at Mt ≈ 0.3.

While a linear analysis of the (inviscid) governing equation may suggest some
independence between the components of pressure, it is expected that in real flows,
solenoidal and dilatational pressure may in fact be correlated to a degree that would
depend on the Reynolds and Mach numbers. Note that this is different from the
velocity field whose solenoidal and dilatational components are by construction
uncorrelated. The correlation coefficient for pressure components from the DNS data
is plotted in figure 10(b). While at low Mach numbers the solenoidal and dilatational
pressure behave independently, at higher Mach numbers they become more negatively
correlated. One can also see a decreasing dependence on Reynolds number as Mt

increases. If by lack of any theoretical guidance, one assumes a power-law scaling
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FIGURE 9. Scaling of solenoidal pressure (a,b) and dilatational pressure (c). Symbols for
different Mach numbers in (a) and Reynolds numbers in (b,c) as in figure 3. Dashed line
in (a) corresponds to ps

rms/〈ρ〉us
rmsus

rms= 1 for reference. Dash-dotted lines in (b,c) indicate
a slope of 2.
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FIGURE 10. (a) Ratio of dilatation to solenoidal pressure fluctuations. (b) Correlation
coefficient, Cp between solenoidal and dilatational pressure respectively. Dashed line
indicates a best-fit curve, Cp = −0.334M2

t . Symbols for different Reynolds numbers as
in figure 3(b).
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in Mt, the data is seen to be consistent with Cp =−0.334M2
t . Since by construction,

correlation coefficients can take values in the interval [−1, 1], this expression is
clearly inadequate for higher Mt.

From a theoretical perspective, one could now argue that this particular decom-
position of p has merit only at low Mt where the two components are uncorrelated,
just like the Helmholtz decomposition for the velocity field. At high Mt, on the
other hand, as dilatational pressure becomes more correlated with solenoidal pressure,
its ability to isolate compressibility effects seems to weaken. Yet, from a practical
perspective, this correlation might be useful for turbulence modelling. As we have
seen, solenoidal pressure is virtually unaffected by compressibility for the range of
Reynolds and Mach numbers investigated. This suggests that the p.d.f. of ps may
be modelled according to theories from incompressible turbulence and dilatational
pressure obtained from this model. For instance, in incompressible turbulence, Vedula
& Yeung (1999) proposed a stretched exponential fit for the negative tails of pressure,
and a Gaussian distribution for positive tails. Using the correlation between solenoidal
and dilatational pressure it is possible to model both components of pressure, and
thus the total pressure fluctuations.

We can now go back to the departures from M2
t observed for total pressure

fluctuations in Donzis & Jagannathan (2013a). By considering both figures 9, and
10 together we can see that at low Mt, where the Mt dependence is stronger for
dilatational pressure, its contribution to total pressure is small. However, as Mt
increases dilatational pressure provides an increasingly large contribution. By using
p′ = ps + pd we can easily obtain 〈p′2〉 = 〈psps〉 + 〈pdpd〉 + 2〈pspd〉 or

〈p′2〉
〈p〉2 =

〈(ps)2〉
〈p〉2 +

〈(pd)2〉
〈p〉2 + 2Cp

〈(ps)2〉1/2
〈p〉

〈(pd)2〉1/2
〈p〉 . (6.1)

Using figures 9(a) and 10(b), we can see that the first term on the right-hand side
scales as M4

t which is expected to be the dominant term at low Mach numbers. In
the other limit, at high Mt, the variance of dilatational pressure also scales as M4

t and
since Cp cannot continue to grow with Mt due to its boundedness, it is plausible to
assume that it will approach a constant. In this case, the last term on the right-hand
side will also scale as M4

t . Thus, 〈p′2〉 will scale as M4
t at low and high Mt but the

prefactors at both limits may be different.
Therefore, we conclude that the apparent departure from M4

t scaling for the variance
of pressure when considering the entire range of Mt in Donzis & Jagannathan (2013a)
appears to reflect the transition of dilatational pressure from low to high Mach
numbers at Mt ≈ 0.3.

6.2. P.d.f. of pressure
Large pressure fluctuations or asymmetries in these fluctuations cannot be captured
by its first or second-order moments. Instead one needs to study high-order moments
or even the entire p.d.f. The skewness of pressure Sp = 〈p′3〉/〈p′2〉3/2, for example,
which measures the asymmetry of the p.d.f., has been shown to change from negative
to positive as Mt is increased (Donzis & Jagannathan 2013a). This transition occurs
around Mt ≈ 0.3, similar to other flow statistics presented in previous sections.
Negative and positive skewness represents an increased likelihood of moderately
low and high-pressure regions in the flow respectively and indicates a qualitative
difference in the role of pressure at low and high Mt. In figure 11(a) we show this
change in the p.d.f. of pressure at Rλ ≈ 160 for different Mt.
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FIGURE 11. P.d.f. of (a) pressure fluctuations and its (b) solenoidal and (c) dilatational
components at Rλ ≈ 160 for different Mt. Lines in grey correspond to a Gaussian
distribution. Symbols for different Mach numbers as in figure 3(a). Arrows are in the
direction of increasing Mt.

It has been suggested (Blaisdell et al. 1993) that this change is a result of pressure
being a positive quantity and therefore bounded from the negative side (p′ > −〈p〉).
However, this does not provide a mechanism that can explain why or how pressure
fluctuations increase on the positive side. One could explore the p.d.f. of solenoidal
and dilatational pressure individually, for example, to elucidate the contribution from
each component.

The p.d.f. of ps ( fps) shown in figure 11(b), has a negligible dependence on Mt and
remains negatively skewed for the range of Mt investigated, with positive fluctuations
following a Gaussian distribution. This is consistent with results in incompressible
turbulence (Pumir 1994; Vedula & Yeung 1999). On the other hand, the p.d.f. of pd

( fpd), shown in figure 11(c), remains close to Gaussian for negative fluctuations, but
becomes positively skewed beyond Mt≈ 0.3. Thus the positive skewness of pressure at



Reynolds and Mach number scaling in stationary compressible turbulence 691

high Mt appears to be a direct result of the large contributions of dilatational pressure.
Note that the appearance of dilatational pressure is a consequence of Navier–Stokes
dynamics as the forcing scheme provides only solenoidal modes.

This conclusion is strengthened if we consider the following observations. First,
since pd becomes anti-correlated with ps at high Mt (see figure 10b) and fps is skewed
to the left, we can expect the tails of fpd to be wider on the right. As long as this
anti-correlation becomes stronger with Mt and ps remains skewed to the left, pd would
continue to show stronger and stronger positive fluctuations mirroring more and more
the negative tails of solenoidal pressure. Second, in figure 10(a), we already observed
that as Mt is increased beyond 0.3, the dilatational pressure fluctuations tend to be of
the same order as that of its solenoidal counterpart which suggests that strong positive
fluctuations are related to dilatational effects. It then seems natural to investigate the
differences in regions of low and high dilatational motions. This is the focus of the
next sections.

6.3. P.d.f. of dilatation
The behaviour of dilatation is particularly relevant in understanding the effects of
compressions and expansions in the flow. Though somewhat arbitrary, shocklets are
commonly defined as regions with instantaneous dilatation being less than a threshold,
θ ′ <−3θrms (Samtaney et al. 2001) and have been suggested to have different effects
on the flow. For instance, shocklets can increase the rate of dilatational dissipation.
While considerable attention has been given to the role of shocklets, the effect of
expansions has not been investigated in any detail. A strong local expansion, for
instance, can result in a large value of pressure-dilatation correlation, which could
bring about a strong energy transfer between kinetic and internal energy.

We consider the Reynolds and Mach number variation of the p.d.f. of normalized
dilatation (θ ′/θrms) for Mt ≈ 0.1, 0.3, 0.6 in figure 12. At low Mt, the tails of the
p.d.f. become wider with Rλ, but remains symmetric, indicating that regions of large
positive and negative dilatation are equally likely to appear intermittently. This Rλ
effect is typical of all velocity gradients in incompressible turbulence (Donzis et al.
2008b). A similar behaviour is observed at Mt ≈ 0.3, though tails appear to be
narrower at low Rλ. It is conceivable that this decline in the appearance of large
gradients in the flow is related to the change in several flow statistics at Mt ≈ 0.3
that has been investigated so far. For higher Rλ, the tails grow wider but retain the
symmetry. Since high Rλ simulations are available only for Mt ≈ 0.3 and 0.4, it is
not possible to comment on their Mach number variation. Finally, at Mt ≈ 0.6, the
p.d.f. becomes asymmetric with wider tails on the left, that grow with Rλ.

More quantitative information about large fluctuations can be obtained by computing
high-order moments, in particular skewness, Sθ , and flatness factors, Fθ = 〈θ ′4〉/〈θ ′2〉2,
which quantifies the asymmetry and the wideness of the tails. The variation of
skewness and flatness of dilatation with Mt is seen in figure 13(a,b). Beyond Mt≈ 0.3,
the negative skewness increases (in magnitude) with Mt, a result also reported in the
literature (Lee et al. 1991; Pirozzoli & Grasso 2004; Wang et al. 2012).

While the Rλ dependence of skewness is negligible at low Mt, there is a substantial
change with Mt beyond Mt ≈ 0.3–0.4. The flatness values, on the other hand,
show a decrease with Mt until Mt ≈ 0.3–0.4 when it reaches a value around 3.0
(Gaussian) for Rλ . 160, and then increase sharply. This behaviour is consistent with
the narrowing of the p.d.f. at intermediate Mt and at low Rλ. The data at higher
Reynolds numbers (Rλ ≈ 275, 450) appear to have higher flatness value at Mt ≈ 0.3
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FIGURE 12. P.d.f. of dilatation at Mt ≈ (a) 0.1 (b) 0.3 (c) 0.6. Symbols for different
Reynolds numbers as in figure 3. Arrows are in the direction of increasing Rλ.

which may indicate stronger intermittency as Rλ increases consistent with velocity
gradients in incompressible flows. In order to assess the precise Reynolds and Mach
number scaling of high order statistics, however, simulations at higher Rλ and Mt are
needed.

Large flatness value such as seen in figure 13, typically indicates that regions of
large positive and negative dilatation appear intermittently in the flow. The percentage
volume of their occurrence is given in table 2. While regions of strong compressions
(θ ′/θrms < −3) and expansions (θ ′/θrms > 3) are equally likely to occur at low
Mt, both have an increased propensity to appear at higher Reynolds numbers. At
the highest Reynolds number for Mt ≈ 0.1, the volume occupied by these strong
dilatations is close to 1 %. At high Mt, this Reynolds number dependence weakens
and compressions are about four times more likely to occur than expansions at any
given Reynolds number. Also note that for all Reynolds and Mach numbers, between
70 and 90 % of the flow has dilatation smaller than its r.m.s., i.e. |θ ′|/θrms 6 1.
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FIGURE 13. Variation of (a) skewness and (b) flatness of dilatation with Mt. Arrows are in
the direction of increasing Rλ. Symbols for different Reynolds number as in figure 3. Dash-
dotted line in (b) corresponds to a flatness value of 3 for a Gaussian distribution. Dashed
lines in (a,b) connect data at fixed Reynolds number for clarity except for the highest
Reynolds numbers where not enough data at different Mt are available to see trends (cf.
table 1).

Rλ Mt (−∞,−3) (−3,−2) (−2,−1) (−1, 0) (0, 1) (1, 2) (2, 3) (3,∞)
39 0.1 0.62 2.04 9.98 37.38 37.29 10.02 2.04 0.61
63 0.1 0.81 1.86 8.28 39.05 39.03 8.28 1.87 0.81

108 0.1 0.88 1.71 7.31 40.16 40.00 7.32 1.72 0.89
173 0.1 0.96 1.51 5.96 41.70 41.42 5.98 1.52 0.96

33 0.3 0.27 2.14 12.71 34.77 34.99 12.82 2.02 0.27
60 0.3 0.35 2.31 12.57 33.79 36.07 12.82 1.89 0.21

106 0.3 0.38 2.20 12.19 34.62 35.97 12.44 1.91 0.29
163 0.3 0.40 2.24 12.19 34.37 36.06 12.61 1.87 0.25

34 0.6 1.06 2.02 8.72 33.86 43.19 9.83 1.11 0.20
58 0.6 1.05 1.76 7.80 34.95 44.59 8.57 1.02 0.26
96 0.6 0.99 1.54 7.12 35.89 45.62 7.70 0.89 0.26

158 0.6 0.90 1.33 6.46 37.01 46.45 6.84 0.77 0.26

TABLE 2. Percentage volume of normalized dilatation (θ ′/θrms) in different bins.

6.4. Relation between thermodynamic variables
It is expected that dilatation, through the coupling of energy equations by the
pressure-dilatation correlation, also affects the fluctuations of thermodynamic variables.
Consider the Reynolds decomposition of the equation of state for an ideal gas,

p′

〈ρ〉R〈T〉 =
ρ ′

〈ρ〉 +
T ′

〈T〉 +
ρ ′T ′

〈ρ〉〈T〉 −
〈ρ ′T ′〉
〈ρ〉〈T〉 , (6.2)

which can be used to examine the relative contributions of each of these terms for
different Mt at different levels of dilatation. The conditional expectation of each term
given dilatation is shown in figure 14. In (a) we see that at Mt ≈ 0.1, the conditional
means are symmetric with respect to dilatation, supporting our earlier observation that
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FIGURE 14. Conditional expectation 〈X|θ ′/θrms〉 given dilatation with X= p′/〈ρ〉R〈T〉 (E),
X = ρ ′/〈ρ〉 (@), X = T ′/〈T〉 (A), X = ρ ′T ′/〈ρ〉〈T〉 (♦) at Mt ≈ 0.1 (a) and, 0.6 (b) at
Rλ ≈ 160.

at low Mt, the thermodynamic fluctuations tend to be the same regardless of whether
the flow experiences compressions or expansions, contingent on the magnitude
of dilatation remaining the same. It is also clear that the dominant contributor
to pressure fluctuations is density while the temperature and density–temperature
correlation are negligibly small. Note that this does not imply an isothermal flow, for
example. Instead, it implies that positive and negative temperature fluctuations are
approximately equally likely in regions of same dilatation values which results then
in strong cancellations and a very small conditional mean. At high Mt, on the other
hand, a qualitatively different picture emerges. First, the symmetry between positive
and negative values of dilatation is no longer present indicating that expansions and
compressions have different effects on the flow. Second, it can be seen that strong
expansions and large positive pressure fluctuations (high pressure) are more likely
to appear together. Intuitively this may not be unexpected as one can argue that
high pressure regions act as precursors for strong expansions. Third, in regions of
large expansions, temperature fluctuations and the density–temperature correlation are
significantly higher than in corresponding regions of compressions.

The asymmetry observed for thermodynamic variables may have an impact on how
the relation between them is modelled. Consider for example the so-called isentropic
assumption,

p/〈p〉 = (ρ/〈ρ〉)γ = (T/〈T〉)γ /(γ−1). (6.3)

By linearizing the above equation, the fluctuations of thermodynamic quantities can be
related as, p′/〈p〉 ≈ γ ρ ′/〈ρ〉 ≈ (γ /(γ − 1))T ′/〈T〉. Substituting these relations in (6.2)
yields

p′

〈ρ〉R〈T〉 ≈ γ
ρ ′

〈ρ〉 + (γ − 1)
(
ρ ′

〈ρ〉
)2

, (6.4)

where the quadratic term in density fluctuations is due to the density–temperature
correlation. It is now possible to use with DNS data to assess the validity of this
approximation by investigating the conditional expectation of pressure given density.
A typical result from such comparison is shown in figure 15 for Rλ ≈ 100 and
Mt ≈ 0.1 and 0.6. The right-hand side of (6.2) is also included with and without the
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FIGURE 15. Conditional expectation of p′/〈ρ〉R〈T〉 given ρ ′/〈ρ〉 at Rλ≈ 100 and Mt≈ 0.1
(grey solid circle) and 0.6 (black solid circle). The linearized isentropic assumption with
and without density–temperature correlation are shown as dash-dotted and dashed lines.
The inset shows the zoomed in view of the conditional expectation at Mt ≈ 0.1 which
follows the linearized isentropic assumption.

density–temperature correlation. While the fluctuations in density are very small for
Mt ≈ 0.1, as seen from the small excursions around zero in figure 15, they become
significant at high Mt, and more specifically, the positive fluctuations are larger. As a
result, the fluctuations in pressure are positive and larger in magnitude. Since density
fluctuations are normalized by their mean and cannot be less than −1.0, it seems
that these large values of pressure, which cause the positive skewness at high Mt, are
likely to be from density–temperature correlation which is the quadratic term in (6.4).
For negative fluctuations of density, the linearized isentropic assumption seems to
be a very good approximation when the density–temperature correlation is included,
while minor deviations are seen for large positive density fluctuations. Finally, since
compressions and expansions behave differently at high Mt, they may have profound
effect on the flow, for instance, in energy exchanges, through the pressure-dilatation
correlation as shown in § 6.6.

6.5. Enstrophy and pressure

Here, we investigate the behaviour of enstrophy (Ω ≡ 〈ω2〉, where ω is the vorticity
vector), and its relation to pressure. The Reynolds and Mach number dependence
of the p.d.f. of enstrophy is shown in figure 16 at Rλ ≈ 100 and 160. While
fluctuations close to the mean show a weak dependence on Mt, stronger fluctuations
show a significant monotonic dependence on the Mach number. The tails of the
p.d.f. recede with increasing Mt regardless of the Reynolds number indicating that with
increasing levels of compressibility, high-enstrophy regions become less prominent.
The predominance of dilatational field over its solenoidal component at high Mt
may be thought as one of the reasons for the overall decrease in enstrophy since,
by construction, only the solenoidal component of velocity has non-zero vorticity.
However, the additional dilatational motions may bring about more shocklets which
may also act as source of more enstrophy. A detailed analysis of this effect will be
reported elsewhere. Our focus here is on the relation of enstrophy and pressure.
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FIGURE 16. Mach number dependence of p.d.f. of enstrophy at (a) Rλ ≈ 100 and (b)
Rλ ≈ 160. Symbols for different Mt according to figure 3(a).
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FIGURE 17. Conditional p.d.f. of pressure given enstrophy (X =Ω/〈Ω〉) at Rλ ≈ 160 for
(a) Mt ≈ 0.1 and (b) Mt ≈ 0.6. Symbols correspond to X ≈ 0.2 (E), 0.7 (@), 2.7 (A), 8
(♦), and 16 (C). Lines in grey correspond to a Gaussian distribution. Arrow in (a) is in
the direction of increasing X.

Since high-pressure regions are more probable to occur at high Mt (due to the
positive skewness of the fp), and the tails of enstrophy become narrower with
increasing Mt, it is possible that enstrophy and high-pressure regions may not be
as well correlated as low-pressure regions are.

This can be directly tested by studying the conditional p.d.f. of pressure given
enstrophy as shown in figure 17. At low Mt (a), consistent with our previous
observations, the p.d.f. is seen to be negatively skewed. The skewness, however,
tends to increase (in magnitude) with increasing enstrophy, showing that at low Mt,
low-pressure and high-enstrophy regions tend to co-exist, similar to incompressible
turbulence (Pumir 1994).

At high Mt (figure 17b), two important observations can be made. First, the
conditional p.d.f.s are positively skewed just as the unconditional p.d.f. Second, we see
a very weak dependence on the value of the conditioning variable Ω , with all p.d.f.s
collapsing to a significant degree especially for positive fluctuations. The negative
fluctuations stay close to Gaussian. This insensitivity to enstrophy levels is qualitatively
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different from data at low Mt (figure 17a) and suggests an increasingly weak
correlation between pressure and enstrophy with compressibility. Thus, it may not
be appropriate, for instance, to visualize vortical structures by identifying regions of
low-pressure.

This de-correlation between enstrophy and low/high pressure at high Mt can be
interpreted in light of the results in figure 10. At low Mt, the pressure fluctuations
are mainly solenoidal, and thus we see low pressure and high-enstrophy regions to be
correlated, similar to incompressible turbulence. As Mt increases, dilatational pressure
fluctuations have an increasingly dominant effect on the overall behaviour of pressure.
Also, at high Mt dilatational pressure and dilatational kinetic energy tend to be in
equipartition. Since, dilatational motions are irrotational, then it is not unexpected that
pressure and enstrophy become less correlated. This suggests, for example, that the
occurrence of high-pressure regions at high Mt, are not primarily caused by solenoidal
effects.

6.6. Correlation between pressure and dilatation

Conditional statistics of pressure given dilatation can also provide information about
the correlation between them, which represents a reversible exchange mechanism
between kinetic and internal energy ((1.1) and (1.2)). In decaying simulations, Lee
et al. (1991) found the role of pressure-dilatation correlation confined to the early
acoustic transient time period. In many realistic applications however, systems are
stationary and hence pressure-dilatation correlation may continue to play a role in the
energy dynamics.

The conditional p.d.f. of pressure for different values of dilatation is shown for
higher Reynolds numbers in figure 18. At low Mach numbers (Mt ≈ 0.1), the tails of
the conditional p.d.f. become wider to the left with increasing magnitude of dilatation,
generally indicating that regions of large negative pressure fluctuations could co-exist
with regions of strong compressions or expansions. On the other hand, the positive
pressure fluctuations stay closer to Gaussian and are only slightly affected by the
value of dilatation. The p.d.f. is also insensitive to the sign of dilatation and Reynolds
number which is seen as curves for positive dilatation (dashed lines) and negative
dilatation (solid lines) coincide in figure 18. This means that the instantaneous value of
pressure is insensitive to locally expanding or compressing fluid elements that have the
same magnitude of dilatation. This has wide implications in the dynamics of energy
transfer between the internal and kinetic energy modes. When the dilatation is large
and negative, for example, pressure fluctuations are more likely to be negative than
positive (see figure 18a). Thus, one expects a positive correlation between them which
corresponds to transfer from internal to kinetic energy. This, indeed, will be further
supported momentarily with data on conditional expectations. A similar argument for
expanding regions (positive dilatation) indicates that the energy transfer is likely to be
from kinetic to internal energy.

As Mt increases (Mt≈ 0.3), the only change is the receding of the tails from the left
that tends to approach Gaussian for small dilatation. But at high Mach numbers (Mt≈
0.6), the tails of the p.d.f., as also seen in figure 11(a), become wider on the right.
While for small dilatation the p.d.f. is still similar for expansions and compressions,
substantial differences can be seen for large dilatations. Due to the change in the
asymmetry of the p.d.f., the energy dynamics changes for Mt≈0.6. Applying the same
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FIGURE 18. Conditional p.d.f. of pressure given dilatation (X = θ ′/θrms) for different
Reynolds and Mach numbers. (a,c,e), (b,d,f ) are at Rλ ≈ 100, 160, respectively. (a,b),
(c,d), (e,f ) are at Mt ≈ 0.1, 0.3, 0.6 respectively. Arrows indicate increasing magnitude
of dilatation. Symbols correspond to X ≈ 0.47 (E), 1.1 (@), 3.0 (A), 4.8 (♦). Solid and
dashed lines stand for negative and positive dilatation values. Lines in grey correspond to
a Gaussian distribution.

analysis as before, but with pressure fluctuations more likely to be positive for large
compressions, we can argue that at high Reynolds numbers, the net energy transfer is
likely to be from kinetic to internal. For expansions, on the other hand, the net energy
transfer will depend on the relative magnitudes of p′θ ′ and ε. Table 3 summarizes the
conclusion on energy exchanges for strong compressions and expansions at low and
high Mt for high Reynolds numbers.
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FIGURE 19. Conditional expectation of pressure-dilatation correlation given dilatation at
Mt ≈ (a) 0.1, (b) 0.6. Symbols for different Reynolds numbers as in figure 3(b). Arrows
are in the direction of increasing Reynolds numbers.

Quantity p′θ ′ ε Net transfer

Mt ≈ 0.1, C IE → KE IE ← KE —
Mt ≈ 0.1, E IE ← KE IE ← KE IE ← KE
Mt ≈ 0.6, C IE ← KE IE ← KE IE ← KE
Mt ≈ 0.6, E IE → KE IE ← KE —

TABLE 3. Summary of net energy exchanges for strong compressions (C) or
expansions (E).

6.7. Energy exchanges
A quantitative way to test the above argument on energy exchanges is to compute the
conditional expectation of pressure-dilatation correlation given dilatation at different
Mt, and is shown in figure 19 for different Rλ as well. When Mt is small and
close to the incompressible limit, the expected value of p′θ ′ is seen to increase in
magnitude with Rλ for both positive and negative fluctuations of dilatation, with a
change in sign occurring around zero dilatation. We also observe a narrow range of
fluctuations (−0.5< θ ′/θrms < 0.5) for which the expected value of pressure-dilatation
correlation is approximately zero. As Mt is increased to 0.6, in addition to the
reduction in magnitude of expected value for negative dilatation, there is an extended
range of dilatation values (−1.0 < θ ′/θrms < 0.6) where the expected value of p′θ ′

is close to zero. This shows that for small dilatation fluctuations, up to Mt ≈ 0.6,
pressure-dilatation correlation is very small suggesting that the energy transfer is
dominated by dissipation. This is consistent with the view that at high Mt, pressure
responds to changes in the flow slower than at low Mt and hence an increasing range
of fluctuations in dilatation is sustained without significant changes to pressure, and
hence pressure-dilatation correlation. As seen at low Mt, there is a sign change in the
expected value of p′θ ′ that occurs around zero dilatation. Qualitatively, the direction
of energy transfer is the opposite of that at low Mt. For expansions, however, we
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FIGURE 20. P.d.f. of pressure-dilatation correlation normalized by r.m.s. (X =
p′θ ′/(p′θ ′)rms) at Mt ≈ (a) 0.1, (b) 0.3, (c) 0.6. Symbols for different Reynolds
numbers as in figure 3(b). Arrows in (a) are in the direction of increasing Reynolds
numbers. The wide tails in (b) are for Rλ ≈ 275, 430.

observe instantaneous bursts of energy transferred from internal to kinetic mode with
a weakening Reynolds number dependence.

To facilitate a comparison between the hypothesis established in § 6.6 and the
conditional expectation, we compare the expected values for larger dilatation values
at different Mt for high Reynolds numbers. The direction of energy transfer changes
only when the expected value changes sign. Since the expected value is positive for
large compressions at low Mt, the energy transferred due to p′θ ′ is from internal to
kinetic, while at high Mt, this direction of transfer is opposite and agrees well with
table 3. Similarly for expansions at low and high Mt, we find the expected value to
be in line with table 3 as long as the Reynolds number is high.

An assessment of the dependence of fluctuations of pressure-dilatation correlation
on Rλ and Mt can be obtained by studying its normalized p.d.f. ( fpdil) and is shown
in figure 20. At low Mt, the p.d.f. is symmetric, and becomes wider with Reynolds
number consistent with the behaviour of other intermittent quantities in incompressible
turbulence (Sreenivasan & Antonia 1997; Donzis et al. 2008b). At Mt ≈ 0.3, they
recede becoming narrower for low Reynolds numbers, following the behaviour
of dilatation (figure 12). For higher Mt, the Reynolds number dependence of the
p.d.f. weakens for a wide range of fluctuations (at least up to 30 times that of the
r.m.s. fluctuations). This result suggests that modelling pressure-dilatation correlation
at high Mt may be in some respect easier than at low Mt.

One could also explore directly the relative importance of pressure-dilatation
correlation due to compressions and expansions, and dissipation by investigating
the ratio α = p′θ ′/ε. A value of α greater (less) than 1.0 would indicate a net
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Rλ Mt (−∞,−5) (−5,−3) (−3,−1) (−1, 0) (0, 1) (1, 3) (3, 5) (5,∞)
108 0.1 0.00 0.00 0.03 0.46 0.46 0.03 0.00 0.00
106 0.3 0.05 0.04 0.11 0.31 0.31 0.11 0.04 0.05

96 0.6 0.15 0.06 0.12 0.17 0.17 0.12 0.06 0.15

173 0.1 0.01 0.01 0.04 0.45 0.44 0.04 0.01 0.01
163 0.3 0.09 0.05 0.12 0.24 0.24 0.12 0.05 0.09
158 0.6 0.19 0.06 0.11 0.14 0.14 0.11 0.06 0.19

TABLE 4. Percentage volume of α = p′θ ′/ε for different Rλ and Mt.

energy transfer from internal to kinetic modes (kinetic to internal). The regime where
pressure-dilatation correlation dominates the energy transfer can be identified as
regions with |α| > 1. We identify the percentage volume of occurrence of different
value of α in eight different bins ranging from −5 to 5 and beyond, as shown in
table 4. At low Mt, regardless of the Rλ, α tends to be in the interval [−1, 1] in
more than 90 % of the domain. Small values of α could be the result of very high
dissipation or a negligible pressure-dilatation correlation. As we show at the end
of this section, we anticipate the result that the latter is true. This means that the
energy transfer is primarily uni-directional for Mt ≈ 0.1 and governed by dissipation
for small dilatational motions. However, as Mt is increased to 0.3, for a large fraction
of volume the energy transfer tends to be dominated by p′θ ′ (regions where α <−1
or α > 1), which in the case of Rλ ≈ 163 and Mt ≈ 0.3 is more than 50 %. As
Mt is further increased to 0.6, very large transfers dominated by pressure-dilatation
correlation are very frequent (see, for e.g. Rλ ≈ 158 and Mt ≈ 0.6 and bins where
α < −5 or α > 5), which is not seen at low Mt. We find that with increasing Mt,
the regions where p′θ ′ tend to play a dominant role in energy transfer, also increases.
Intuitively one may be able to attribute this to regions with strong dilatations that
occurs more frequently as Mt is increased (cf. table 3).

It is also of interest to understand how the energy is transferred in the mean sense
and is often studied in the literature (Kida & Orszag 1990; Sarkar 1992). For this
purpose, we show the ratio of mean pressure-dilatation correlation to mean dissipation
in figure 21 including solenoidal and dilatational contributions (β =〈p′θ ′〉/〈ε〉, βs, βd).
We observe that β is close to zero at low Mt indicating negligible contribution from
pressure dilatation to the net energy transfer. While there is a minor scatter around
zero for Mt ≈ 0.4 as seen in other statistics, we see that for higher Mt, β is negative
and close to zero, an observation also noted in Kida & Orszag (1990). This means
that at high Mt, the net transfer of energy is from kinetic to internal mode.

From figure 21(b,c), we see that, unlike at low Mt where the contributions of βs
and βd are close to zero, at high Mt their contributions oppose each other with the
net transfer being dominated by the contributions from solenoidal pressure-dilatation
correlation. However, it is important to consider that these transfers might actually
come from different processes. As observed in figure 11(b), the solenoidal pressure
is insensitive to changes in Mt and Rλ, and remains negatively skewed. But, from
figure 12 we have seen that the p.d.f. of dilatation becomes negatively skewed as Mt
increases. Hence, the change in βs occurs, in part, due to the changes in the behaviour
of dilatation with Mt, and not directly because of solenoidal pressure. Since, βs is
negative, both dissipation and solenoidal pressure-dilatation correlation work together
in converting kinetic energy to internal energy. The processes associated with βd,
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FIGURE 21. Ratio of (a) β = 〈p′θ ′〉/〈ε〉, (b) βs= 〈psθ ′〉/〈ε〉, (c) βd = 〈pdθ ′〉/〈ε〉 versus Mt
for different Reynolds numbers. Symbols for different Reynolds numbers as in figure 3(b).

on the other hand, is more difficult to ascertain since the p.d.f.s of both dilatational
pressure and dilatation change beyond the threshold of Mt≈ 0.3. One could thus state
that the change in energy transfer due to βd is in part due to the change in p.d.f. of
dilatational pressure.

7. Conclusion
We have investigated the Reynolds (Rλ) and Mach number (Mt) scaling of stationary

compressible isotropic turbulence using direct numerical simulations (DNS) at
resolutions ranging from 643 to 20483 and at a range of Rλ (38–450) and Mt (0.1–0.6).
Our focus was on energy exchanges, and the variables involved in this processes. The
effect of compressibility in general was studied by decomposing different quantities
into solenoidal (incompressible) and dilatational (compressible) components. A general
conclusion from our work is that there are qualitative differences in compressible
turbulence at low and high Mach numbers. We identified Mt ≈ 0.3 as the transition
between them. Compressibility effects are apparent only in the high-Mt regime
(Mt & 0.3). Interestingly, these dilatational effects are the result of Navier–Stokes
dynamics exclusively, as the forcing utilized here is purely solenoidal.
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The normalized mean energy dissipation rate asymptotes to a constant (D ≈ 0.43)
beyond Rλ≈ 100 similar to incompressible turbulence. However, while relatively small
compared to the solenoidal component, the dilatational dissipation increases rapidly
with Mach number for Mt & 0.3. The data thus suggest an Mt-dependent asymptote
at high Rλ. The classical Kolmogorov scaling of incompressible turbulence for length,
velocity and time scales also appear to be only weakly affected by compressibility for
the range of Mt studied here. However, if the asymptotic value of D depends on Mt,
then Kolmogorov scales will also retain that dependence. Simulations at higher Mach
numbers are highly desirable to investigate this claim.

The scaling of solenoidal to dilatational components of dissipation rates, as well
as kinetic energy present a different power-law behaviour in the low and high Mt
regimes. At high Mt these ratios were found to scale close to M4

t and M2
t , respectively.

This has an effect on how the ratio of solenoidal to dilatational Taylor scales with
Mt. While in linear analyses this ratio is assumed constant, we found it to vary as
M1.2

t in the high Mt regime. It is interesting to note that different Taylor scales for
the solenoidal and dilatational components may indicate differences in the location
or extent of inertial ranges for the two components of the velocity field if an
inertial-range concept, originally developed for incompressible turbulence, can indeed
be extended to the dilatational component. We are currently exploring the validity
and consequences of such an idea.

Equipartition of energy, the concept that compressible turbulence tends to a state
with equal levels of energy in the dilatational components of potential and kinetic
energy, was also investigated. Previous theoretical analyses suggest equipartition to
be valid for decaying turbulence in the low-Mt, high-Rλ regime. We observe that in
forced turbulence, equipartition is better realized only at high Mt with a weakening
Reynolds number dependence. This appears to indicate a fundamental difference
between decaying and forced flows. A similar statement on equipartition but based
on total (instead of dilatational) pressure fluctuations was also found to possess a
transition around Mt ≈ 0.3 with DNS supporting better equipartition at high Mt.

Results on the r.m.s. of total, dilatational and solenoidal pressure fluctuations
indicate a M2

t scaling when normalized by the mean pressure. Small departures found
in the literature can be explained by the transition for dilatational pressure from being
very small at low Mt to the same order of magnitude as the solenoidal component
at Mt & 0.3. At the same time, the correlation between dilatational and solenoidal
components becomes more negative with Mt. This is different from the velocity field
which, by construction, results in solenoidal and dilatational components that are
uncorrelated.

The change in p.d.f. of pressure from negative at low Mt to positive at high Mt
noted previously in the literature was found to be due to the dilatational pressure
at high Mt whose p.d.f. is also positively skewed with positive tails widening as Mt
is increased. The p.d.f. of solenoidal pressure is weakly dependent on Mt and very
similar to incompressible turbulence. Consistent with other statistics, this transition
occurs around Mt ≈ 0.3 when the solenoidal and dilatational pressure fluctuations
are nearly of the same magnitude. As pressure acquires a stronger signature of its
dilatational component at high Mt, the correlation between pressure and vorticity is
weakened.

Dilatation fluctuations are symmetric at low Mt but develop long negative tails, and
thus negative skewness at high Mt. In fact, strong compressions are approximately four
times more likely than expansions at high Mt.

The interplay between dilatation and pressure gives rise to different energy
exchanges through the pressure-dilatation correlation term in the energy equation.
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We found that the roles of expansions and compressions change depending on how
Mt compares with the transition Mt ≈ 0.3. For low Mt, pressure and dilatation are
positively correlated in regions of large positive dilatation (expansions), indicating
predominance of transfers from kinetic to internal energy, a process in the same
direction as dissipation. For compressions, on the other hand, transfer due to
pressure-dilatation correlation is predominantly from internal to kinetic and a
competition between pressure-dilatation correlation and dissipation ensues. At low
Mt, though, dissipation overwhelms pressure-dilatation correlation. For high Reynolds
numbers, large compressions are correlated with kinetic-to-internal transfer while
expansions lead to internal-to-kinetic transfer due to the pressure-dilatation correlation
term at high Mt. We have also found that as Mt increases, a larger fraction of
the domain is dominated by pressure-dilatation correlation transfer compared to
dissipation.

In conclusion, we have shown that statistically steady compressible turbulence,
presents a qualitatively different behaviour at low and high turbulent Mach numbers
with a transition around Mt ≈ 0.3. Changes in behaviour are observed in terms of
equipartition of energy, the scaling pressure and dilatation, as well as energy transfers.
Turbulence models aimed at a range of Mt should be able to capture these different
scaling ranges.
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