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Shock–turbulence interactions at high
turbulence intensities
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Shock–turbulence interactions are investigated using well-resolved direct numerical
simulations (DNS) and analysis at a range of Reynolds, mean and turbulent Mach
numbers (Rλ, M and Mt, respectively). The simulations are shock and turbulence
resolving with Rλ up to 65, Mt up to 0.54 and M up to 1.4. The focus is on the
effect of strong turbulence on the jumps of mean thermodynamic variables across the
shock, the shock structure and the amplification of turbulence as it moves through
the shock. Theoretical results under the so-called quasi-equilibrium (QE) assumption
provide explicit laws for a number of statistics of interests which are in agreement
with the new DNS data presented here as well as all the data available in the
literature. While in previous studies turbulence was found to weaken jumps, it is
shown here that stronger jumps are also observed depending on the regime of the
interaction. Statistics of the dilatation at the shock are also investigated and found
to be well represented by QE for weak turbulence but saturate at high turbulence
intensities with a Reynolds number dependence also captured by the analysis. Finally,
amplification factors are found to present a universal behaviour with two limiting
asymptotic regimes governed by (M − 1) and K = Mt/R

1/2
λ (M − 1), for weak and

strong turbulence, respectively. Effect of anisotropy in the incoming flow is also
assessed by utilizing two different forcing mechanisms to generate turbulence.

Key words: compressible turbulence, shock waves, turbulence simulation

1. Introduction and background

Shock–turbulence interactions (STI) are observed in a number of contexts including
supersonic aerodynamics, turbulent combustion and astrophysical flows making them
an important topic in fluid dynamics. The existence of a shock in a turbulent flow can
significantly alter both the mean fields and turbulent characteristics. At the same time,
turbulence can also change the structure of a shock. This two-way coupling makes
well-known laminar theories predicting, for example, properties jumps across the
shock inapplicable in the general case (Lele 1992b; Lee, Lele & Moin 1993; Larsson
& Lele 2009; Velikovich, Huete & Wouchuk 2012; Larsson, Bermejo-Moreno &
Lele 2013). The complexities associated with such flows have made investigations
very challenging from the theoretical, experimental and numerical standpoints. To
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make progress, therefore, it seems necessary to devise flow configurations that
reduce complexity yet maintain the essential physics and features of interest. Thus,
the canonical interaction of isotropic turbulence with a normal shock has received
substantial interest and a large body of literature is devoted to the topic (Sagaut &
Cambon 2008; Gatski & Bonnet 2009).

Early theories studied the adjustment of one-dimensional shock waves to changing
conditions produced by, e.g. non-uniform media and non-uniform channels (Moeckel
1952; Chisnell 1955; Whitham 1958). However, it was the more general theoretical
work of Ribner and Moore (Moore 1954; Ribner 1954a,b) who analysed the
impingement of different small disturbances on a normal shock in an inviscid flow
that provided impetus to the field for decades to come. The incoming disturbance was
constructed as a linear combination of simple waves, typically following the first-order
decomposition of Kovasznay (1953). If the governing equations and jumps conditions
across the shock are linearized, one can obtain a closed solution, known as the linear
interaction analysis (LIA). Although LIA can predict, under certain conditions, some
of the trends associated with amplification of turbulence, evidence from experiments
(Andreopoulos, Agui & Briassulis 2000) and simulations (Lee et al. 1993; Mahesh
et al. 1995; Lee, Lele & Moin 1997; Larsson & Lele 2009; Donzis 2012a) have
shown that other characteristics of the incoming turbulence not taken into account in
the theory can strongly modify the outcome of the interaction. Alternatively, since the
shock is essentially a very strong longitudinal velocity gradient, rapid distortion theory
(RDT) has also been exploited to provide complementary insight (Jacquin, Cambon
& Blin 1993; Kitamura et al. 2016). However, RDT was found to overestimate
turbulence amplification, in part, due to the non-homogeneous compression induced
by the shock (Jacquin et al. 1993).

Because of the analytical intractability of the problem, direct numerical simulations
(DNS) have become an invaluable tool to seek fundamental insight into STI. A
number of DNS studies that investigated STI have also presented comparisons with
different theories (Jacquin et al. 1993; Lee et al. 1993, 1997; Mahesh et al. 1995;
Mahesh, Lele & Moin 1997; Jamme et al. 2002; Larsson & Lele 2009; Larsson
et al. 2013; Ryu & Livescu 2014; Quadros, Sinha & Larsson 2016a,b). A general
conclusion from those studies is that turbulence is indeed amplified due to the shock
compression. With the enhanced turbulence, various quantities were shown to increase
across the shock such as Reynolds stresses, enstrophy and thermodynamic fluctuations.
Other variables, on the other hand, were observed to decrease across the shock such
as the Taylor and Kolmogorov length scales. Some investigations utilized Kovasznay
(1953) decomposition to understand the contributions from different modes (Lee et al.
1997; Mahesh et al. 1997; Jamme et al. 2002; Quadros et al. 2016a). However, such
a method is based on a strong linearization of the fluctuations and is therefore not
clear how applicable it is in the case of strong turbulence. Experimental investigations,
while very challenging, have also been pursued using different facilities and means
of turbulence generation (Honkan & Andreopoulos 1992; Barre, Alem & Bonnet
1996; Agui, Briassulis & Andreopoulos 2005; Inokuma et al. 2017). Qualitatively,
results are consistent with simulations. However, also consistent with simulations, data
suggest that the interaction depends on other characteristics not included in classical
theoretical approaches of the incoming turbulence (Agui et al. 2005). Indeed, careful
comparisons (Donzis 2012a) between DNS, experiments, and LIA show significant
discrepancies which depend not only on the mean Mach number (M) as predicted by
LIA, but also – and more importantly – systematically on the turbulent Mach number
(Mt) and the Reynolds number (Rλ).
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To account for these observed dependencies, the collection of amplification factors
of streamwise velocity (G ≡ u′22 /u

′2
1 , where primes indicate root-mean-square (r.m.s.)

quantities and 1 and 2 indicate locations upstream and downstream of the shock)
in Donzis (2012a) shows, as mentioned above, systematic trends with Reynolds and
turbulent Mach numbers. These observations suggest that some of the assumptions
behind LIA (linearity, no viscosity effects, shock wave as a discontinuity) are not
satisfied for some conditions. It was then proposed an alternative scaling parameter,
K, that includes not only the mean Mach number but also the turbulent Mach number
and the Reynolds number. This parameter K ≡Mt/R

1/2
λ (M− 1), which can be written

as the ratio of shock thickness (δl) to Kolmogorov length scale (η), was shown to
provide good collapse of the available data. While some new numerical studies have
appeared since then, the main focus has been on relatively strong shocks. Regimes
where, instead, turbulence is relatively strong – and where assumptions behind
classical theories may be inapplicable – have thus received relatively less attention,
and is a thrust in this work.

Of interest also is the effect of turbulence on the shock, especially when turbulence
is relatively intense. At high enough turbulent intensities it has been found that the
shock may present ‘holes’ on its surface along which variables do not undergo a
steep change consistent with classical one-dimensional inviscid theoretical results.
Instead, variables can change smoothly or present multiple peaks. These two
qualitatively distinct regimes have been termed wrinkled and broken (Lee et al.
1993; Larsson & Lele 2009) and have been traditionally determined from visual
observations of flow fields. To quantify the effects of turbulence on the shock, one
can consider the r.m.s.-to-mean ratio of dilatation at the shock, Θ . Under the so-called
quasi-equilibrium (QE) assumption (described more precisely below), we have derived
an expression for Θ which depends solely on the parameter Mt/1M (Donzis 2012b)
where 1M = M − 1 and that collapsed the data available then. Furthermore, we
proposed a mechanisms for the creation of holes due to subsonic regions resulting
from strong turbulent fluctuations. While the proposed criterion (Mt/1M ≈ 0.6)
indeed identified correctly wrinkled and broken regimes (Donzis 2012b), no data
were available to test directly the appearance of subsonic regions. Here we test this
result and extend analytical expressions to the case of strong turbulence.

It has also been observed that turbulence fluctuations can affect the mean properties
around the shock. The well-known Rankine–Hugoniot (RH) relations provide an
exact solution for the change of properties across a one-dimensional normal shock
(Thompson 1984). These expressions depend only on M. When turbulence is present,
however, one can expect the results to depend also on turbulent characteristics.
Lele (1992b) considered shock jumps of density and pressure in the presence of
turbulence using an RDT closure and derived closed expressions for these jumps as
a function of M and Mt. However, Larsson et al. (2013) suggested that while results
were in qualitative agreement with DNS data, there were substantial quantitative
disagreements and proposed an empirical dependence on Mt/M instead. In addition
to its fundamental importance, understanding the effect of turbulence on mean fields
has implications for stability of shock waves in practical devices such as scramjets as
well as in simulations of STI. In the latter, corrections to obtain a stationary shock
are typically found in a trial-and-error manner (Larsson & Lele 2009; Ryu & Livescu
2014). Thus, there is a clear need to further our fundamental understanding of the
effect of turbulence on mean fields, an effort that is undertaken here as well.

The rest of the paper is organized as follows. In § 2, the details of the numerical
methods used including grid convergence and domain size effects are introduced. In
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§ 3, the quasi-equilibrium assumption is described and utilized to obtain thermodynamic
jumps and r.m.s.-to-mean dilatation at the shock which are compared with DNS data.
Amplification factors are discussed in § 4. Finally, conclusions are presented in § 5.

2. Direct numerical simulations
2.1. Governing equations

The simulations presented here are based on the compressible Navier–Stokes
equations:

∂ρ

∂t
+∇ · (ρu)= 0, (2.1)

∂

∂t
(ρu)+∇ · (ρuu)=−∇p+∇ · τ + ρf + S, (2.2)

∂

∂t
(ρe)+∇ · (ρeu)=−p∇ · u+∇ · (κ∇T)+ τ · ∇u+ Se, (2.3)

where ρ is density, u is the velocity vector, p is pressure, τ is the stress tensor for
a Newtonian fluid given by τij = µ(∂ui/∂xj + ∂uj/∂xi − (2/3)δij∂uk/∂xk) with zero
bulk viscosity, f is the body force vector used to generate turbulence, S is a sponge
vector, e is internal energy, κ is thermal conductivity and T is temperature. The
viscosity follows a power law with temperature as µ = µ0(T/T0)

0.75 (µ0 and T0 are
reference values) and the Prandtl number is assumed to be constant at Pr= 0.72. To
close the system of equations, an ideal gas is assumed which follows the equation
of state p = ρRT with R being the gas constant of the fluid. The ratio of specific
heats is γ = 1.4. As in virtually all previous studies (§ 1), the flow is assumed to
be a continuum which is justified at the conditions presented here (Moser 2006). As
in Donzis & Jagannathan (2013) and Jagannathan & Donzis (2016), discretization of
spatial derivatives is performed with tenth-order compact schemes whose numerical
and computational advantages are well known (Lele 1992a).

2.2. Numerical methods
In order to assess the generality of the theoretical results presented here, two
approaches are used to generate turbulence which yield isotropic and anisotropic
fluctuations. The two methods used the same code and adopt the same forcing. The
difference between the two approaches lies on where the forcing is applied (S0) as
is seen in the schematic diagrams given in figure 1. This forcing consists of an
additional body force in the momentum equation which is stochastic and applied at
large scales. This force is constructed using integrated Ornstein–Uhlenbeck processes
with finite-time correlation in Fourier space. In physical space, the forcing can be
written as

f =
∑
|k|<kF

f̂
⊥
(k)e−ik·x, (2.4)

where f̂
⊥
(k) = (I − kk/k2) · f̂ is the projection of the mode at wavenumber k onto

a plane perpendicular to the wave vector itself. This guarantees that the stirring
mechanism is, by construction, solenoidal. The forcing parameters are chosen to
achieve a given Rλ and Mt and, at the same time, yield integral length scales which
are a fraction of the domain size. Further details of the forcing and statistics of
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U0

U0

S0 S1

Î

S2Shock

S0 S1 S2Shock

(a)

(b)

FIGURE 1. A schematic of the shock interacting with (a) isotropic turbulence and (b)
anisotropic turbulence in the computational domains.

the resulting turbulence fields are described in Donzis & Jagannathan (2013) and
Jagannathan & Donzis (2016).

The two approaches that result in isotropic and anisotropic turbulence, respectively,
are now described.

Isotropic turbulence (IT). In this procedure a separate simulation of isotropic
turbulence in a triply periodic domain (S0) is conducted (figure 1a). Once in stationary
state, the turbulence is convected through the inlet using Taylor hypothesis at a
velocity U0 which corresponds to a mean Mach number, M. A similar procedure
has been used before in the literature with forced (e.g. Ryu & Livescu 2014) and
decaying turbulence (e.g. Mahesh et al. 1997; Larsson & Lele 2009) though forcing
details are somewhat different.

Spatially developing turbulence (SDT). In this approach, turbulence is generated
upstream of the shock in S0 in a single simulation as it is convected at U0 (figure 1b).
The domain is longer in the streamwise direction than that for the isotropic approach
above. The interaction between the fluctuations and the mean flow in S0, results in
unequal production rates in the streamwise and transverse components (Taylor 1935).
The result is a slightly anisotropic flow with a streamwise component of the velocity
variance larger than transverse components. Such flow is closer to grid-generated
turbulence in wind tunnels where anisotropy in the turbulence has been consistently
observed (Grant & Nisbet 1957; Mohamed & Larue 1990).

To sustain a statistically stationary shock at a prescribed location in the domain it
is necessary to impose a relatively high pressure downstream of the shock which is
done here using a sponge region (S1 in figure 1). For a shock in a uniform flow, the
appropriate pressure jump is given by standard Rankine–Hugoniot relations. However,
the interaction of turbulent fluctuations with the normal shock produces a well-known
slow drift of the shock (Lee et al. 1993; Larsson et al. 2013; Ryu & Livescu 2014)
which is due to the changes in post-shock pressure when upstream fluctuations are
present. In a typical STI simulation the back pressure is commonly adjusted in
a trial-and-error fashion. Our analytical results below, instead, provide the explicit
dependence of pressure jumps on characteristics of the upstream turbulence.

In addition, care has to be taken to avoid boundary reflections as the flow becomes
subsonic downstream of the normal shock. Thus, we use a second sponge (S2 in
figure 1) between S1 and the outlet. In this region the flow is smoothly accelerated to
supersonic speeds such that no characteristic travels upstream from the outlet avoiding
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-1 0 1 2
x/L

-1 0 1 2
x/L

1.6
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1.2
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0.8

2.5

2.0

1.5

1.0

0.5
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(a) (b)

1 22� 1 22�

R 1
1/

R 1
1,

1

FIGURE 2. Typical streamwise distribution of (a) Reynolds stress R11 and (b) pressure,
both normalized by their upstream value at M = 1.2, Rλ ≈ 25 and Mt = 0.21. Vertical
dashed lines at x1, x2′ and x2 for reference.

potential effects from outflow boundary conditions. This approach has been used and
tested in previous studies (Freund 1997; Ryu & Livescu 2014). In both sponge regions
S1 and S2 we include a body force of the following form:

Sq = A〈q〉
(x− xs1)

n1(x− xs2)
n2

ln1+n2+1
s

(qref − q), (2.5)

where A is a constant, 〈·〉 represents an average over the sponge region, xs1 and xs2
are the beginning and the end points of a sponge, ls is the length of a sponge, n1
and n2 are constant exponents and subscript ‘ref’ stands for the specified value that a
variable inside the sponge converges to (pressure in S1 and streamwise velocity in S2).

There is some freedom in choosing the sponge parameters, A, n1 and n2. However,
we found that some combinations were potentially unstable. From numerical
experimentation we found that (n1, n2) = (1, 1) in S1 and (2, 0) in S2 provide
adequate results such that the simulations are stable and both turbulence and shock
statistics are insensitive to the parameters in the sponge region.

2.3. Averages and characteristic locations
It is often convenient to decompose the flow using Reynolds decomposition, that is
f = 〈 f 〉 + f ′ where 〈 f 〉 is a suitably defined mean and f ′ is the fluctuating part which
satisfies 〈 f ′〉= 0. In compressible flows, it is also common to use Favre averages (e.g.
Gatski & Bonnet 2009) defined as f̃ = 〈ρf 〉/〈ρ〉. The fluctuations around the Favre
averages are denoted by f ′′ such that f = f̃ + f ′′ and 〈ρf ′′〉 = 0.

The specific space over which averaging is done depends naturally on the flow
of interest. In the present simulations, since the streamwise direction (x) is not
homogeneous, averages can be taken over the other two homogeneous directions, that
is over y–z planes. Furthermore, since the flows presented here are also statistically
stationary, one can improve statistical convergence by averaging over time as well.
Unless otherwise noted, angular brackets represent plane and time averages in what
follows.

We make a few remarks here to identify specific characteristic locations in the
flow. Figure 2(a) shows a typical well-resolved (as shown in § 2.4) distribution of
the streamwise Reynolds stress, R11 = ũ′′u′′, as a function of the streamwise direction.
Turbulence enters the domain from the left, and it undergoes a viscous decay. As
turbulence reaches the vicinity of the shock, these Reynolds stresses, as well as other
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Shock–turbulence interactions at high turbulence intensities 819

thermodynamic properties such as p (figure 2b), begin to increase. The local minimum
thus formed has been defined in the literature as the upstream location of the shock
and will be denoted here by a subscript 1. Assessing amplification or reduction across
the shock can be then performed by normalizing a quantity of interest by its value
at this upstream condition. The non-dimensional parameters that characterize the flow
are naturally defined at x1. These are the mean Mach number of the incoming flow
(M≡ 〈u1〉/〈c〉) which for a stationary shock is also the so-called shock Mach number,
the Taylor Reynolds number (Rλ ≡ 〈ρ〉u1,rmsλ/〈µ〉) and the turbulent Mach number

(Mt ≡ |̃u′′u′′|
1/2
/〈c〉).

Inside the shock region, stresses reach a peak at a location where the pressure
gradient is largest. Reynolds stresses then decrease and reach a downstream minimum
where pressure attains a maximum. This location, identified as 2′, indicates the end of
the region dominated by shock compression. An expansion wave would follow behind
the shock (Larsson & Lele 2009) where the stress reaches its downstream maximum.
This process is dominated by pressure-dilatation exchanges that transfer internal
energy to turbulent kinetic energy (Lee et al. 1993). The Reynolds stresses increase
but eventually viscous dissipation dominates the energy exchanges and turbulence
undergoes again a classical viscous decay. The local maximum of R11 downstream of
the shock is denoted here by a subscript 2.

2.4. Resolution and DNS database
In table 1 we summarize the parameters for the simulations of STI with IT. The
incoming turbulence is at turbulent Mach numbers ranging from 0.05 to 0.54 and
Reynolds numbers up to 65. These parameters are obtained at location x1. The table
also includes the ratio of Kolmogorov length scale to grid size η/1x, and the shock
thickness to grid size, δl/1x, where (Thompson 1984) δl = 2k1〈µ1〉/(〈c1〉〈ρ1〉1M)
with k1 = (4/3 + (γ − 1)/Pr). In our simulations k1 ∼ O(1). We have also included
the classification of the regime of the interaction based on the mechanism in Donzis
(2012b) where a transition from wrinkled to broken was proposed at Mt/1M ≈ 0.6,
consistent with the regimes observed in the literature (Larsson et al. 2013; Ryu &
Livescu 2014).

To ensure grid independence, convergence tests were conducted to assess the
sensitivity of variables that characterize both large and, more critically, small scales.
Two quantities that satisfy these requirements are the streamwise Reynolds stress,
specifically its amplification factor, and the maximum dilatation at the shock. The
latter is critically sensitive to resolution as it is computed at a location where gradients
are largest (inside the viscous shock). In fact, this is a very strict resolution criterion
but necessary for well-resolved shock-resolving simulations. In figure 3, we show the
typical behaviour of the amplification factor of streamwise velocity, G = R11,2/R11,1
and r.m.s.-to-mean dilatation Θ (Donzis 2012b) as the ratio of shock thickness to grid
spacing is increased. We see that beyond δl/1x≈ 4.5, changes in these quantities are
within 2 % and are thus considered grid converged. Similar results have been observed
for the other conditions in our database. In addition, we have found (Jagannathan &
Donzis 2016) that a resolution of η/1x ≈ 0.5 is sufficient in isotropic turbulence to
capture even fourth-order moments of velocity gradients at the conditions presented
here. From tables 1 and 2 we can see that resolving the shock wave provides a
stricter resolution criterion. In the table we also include 〈δt〉, the average thickness
of the shock when turbulence is present (Donzis 2012b) which is here computed as
(〈u2〉 − 〈u1〉)/(∂〈u〉/∂x)max. As expected and consistent with theoretical predictions
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820 C. H. Chen and D. A. Donzis

Grid M Rλ Mt δl/1x 〈δt〉/1x η/1x Regime

1024× 2562 1.1 12 0.05 4.89 11.0 8.58 Wrinkled
512× 1282 1.1 10 0.08 4.84 9.4 4.86 Broken
512× 1282 1.1 10 0.14 8.42 17.1 4.96 Broken
256× 1282 1.1 11 0.22 6.90 13.9 2.55 Broken
256× 1282 1.1 11 0.29 10.14 16.3 2.65 Broken
256× 1282 1.1 11 0.34 13.31 17.2 2.82 Vanished∗

1024× 2562 1.1 27 0.13 4.85 23.8 4.65 Broken
512× 1282 1.1 24 0.22 4.57 25.8 2.56 Broken
512× 1282 1.1 25 0.30 6.99 29.5 2.68 Broken
512× 2562 1.1 24 0.44 12.83 50.0 3.05 Vanished∗

2048× 5122 1.2 12 0.05 4.86 15.6 17.7 Wrinkled
1024× 2562 1.2 11 0.08 4.85 14.5 9.80 Wrinkled
512× 1282 1.2 10 0.14 4.53 12.3 4.94 Broken
512× 1282 1.2 12 0.22 7.42 19.6 5.05 Broken
256× 1282 1.2 13 0.39 5.82 16.6 2.48 Broken
2048× 5122 1.2 27 0.12 4.85 34.4 9.42 Broken
1024× 2562 1.2 24 0.21 4.82 36.4 5.14 Broken
1024× 2562 1.2 23 0.32 7.24 43.2 5.23 Broken
512× 2562 1.2 25 0.44 5.34 49.9 2.82 Broken
2048× 5122 1.2 47 0.34 4.69 84.5 4.61 Broken
1536× 5122 1.2 42 0.42 5.36 84.9 4.10 Broken
4096× 5122 1.2 62 0.28 4.86 129 6.48 Broken
2048× 5122 1.2 65 0.51 5.05 109 3.64 Broken

2048× 5122 1.4 23 0.23 4.82 45.6 9.51 Wrinkled
1536× 5122 1.4 25 0.33 5.45 48.8 7.78 Broken
1024× 2562 1.4 23 0.45 5.58 61.2 5.47 Broken
1024× 2562 1.4 24 0.54 6.32 61.8 5.35 Broken

TABLE 1. DNS database of isotropic turbulence (IT) passing through a shock: number
of grid points, mean Mach number (M), turbulent Mach (Mt), Taylor Reynolds numbers
(Rλ), normalized shock thicknesses and Kolmogorov length scale. The wrinkled and broken
regimes correspond to the criterion in Donzis (2012b). Conditions for vanished regimes
(marked with ∗) are computed at the upstream minimum for pressure (§ 3.3).

(Donzis 2012b), the difference between δl and 〈δt〉 increases with Mt. We do note
that these definitions are estimates based on the maximum gradient at the shock and
upon inspection represent only a fraction of the actual spatial extent occupied by
the shock. In fact, even for the most stringent condition, at least 20 grid points are
located between x1 and x2 (see figure 2). As mentioned above, however, this is for
the most stringent cases and, as seen in the tables, most simulations have a larger
number of grid points in the shock region. We have also verified grid convergence
in the transverse direction since downstream of the shock, the Kolmogorov scale is
reduced (Larsson & Lele 2009). At the most stringent conditions, we see a reduction
of ∼30 % in η which when evaluated with our resolutions (tables 1 and 2) results in
η/1y≈ 1.8 which is also grid converged (Jagannathan & Donzis 2016) for all cases
here.

To ensure the sponges downstream of the shock have negligible effect on the
interaction, we have conducted simulations with varying distance between the shock
and the sponges, ∆ (see figure 1). The results are seen in figure 4 where we show
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Grid M Rλ Mt R11/R22 δl/1x 〈δt〉/1x η/1x Regime

384× 1282 1.07 5 0.15 1.24 25.9 25.11 5.86 Vanished∗

768× 1282 1.1 4 0.02 1.26 8.55 9.15 13.6 Wrinkled
384× 1282 1.1 5 0.04 1.25 6.98 7.65 6.33 Wrinkled
384× 1282 1.1 5 0.07 1.33 11.7 12.2 6.47 Broken
384× 1282 1.1 5 0.12 1.57 15.8 17.1 6.14 Broken
768× 1282 1.1 13 0.06 1.11 4.88 9.96 5.23 Wrinkled
512× 1282 1.1 12 0.09 1.29 5.77 10.4 4.36 Broken
384× 1282 1.1 13 0.13 1.47 5.94 10.6 3.27 Broken
384× 1282 1.1 10 0.16 1.10 7.30 13.7 3.25 Broken

768× 1282 1.2 7 0.07 1.40 6.95 10.04 9.92 Wrinkled
384× 1282 1.2 5 0.09 1.37 7.37 9.25 6.49 Wrinkled
384× 1282 1.2 5 0.12 1.48 8.20 10.9 6.06 Broken
384× 1282 1.2 5 0.16 1.64 9.37 13.2 5.75 Broken
1536× 2562 1.2 13 0.05 1.44 4.75 11.0 12.9 Wrinkled
896× 1282 1.2 12 0.08 1.23 4.86 10.6 8.34 Wrinkled
512× 1282 1.2 13 0.16 1.48 4.98 12.6 4.38 Broken

TABLE 2. DNS database of anisotropic turbulence (SDT).
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0 2 4 6 8 10
∂l/Îx

1.0

ŒG

0.9

0.8

0.7

0.6

(a) (b)

FIGURE 3. Grid-independence test with different δl/1x at M= 1.1, Mt= 0.21 and Rλ≈ 25
for (a) amplification factor and (b) r.m.s.-to-mean dilatation. The dashed line represents
δl/1x= 4.5.

the distribution of R11 different values of ∆. While all cases appear to collapse, some
shock drifting is actually observed at ∆ = 0.5π. This is more evident in figure 5
where we present G and Θ for different values of ∆. Differences in this quantities
for ∆ & π are negligibly small. While data with ∆ = 0.5π are also close, as a
conservative measure especially at high Mt, we have used ∆= π. For reference, we
mention that this distance corresponds to 1≈ 2L where L is the integral scale of the
incoming turbulence.

3. Turbulent shock jumps and shock structure
3.1. Theoretical background: quasi-equilibrium assumption and truncated integrals

Available results in the literature clearly show that characteristics of STI depend
critically on the strength of turbulence (Andreopoulos et al. 2000) which is not
captured by LIA. The theoretical work of Moeckel (1952), Chisnell (1955), Whitham
(1958), is also unable to capture the complex behaviour of STI because of its
simplified configuration and restrictive assumptions. An alternative view was more
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FIGURE 4. Distribution of R11 at M = 1.2, Mt = 0.23 and Rλ ≈ 10 with ∆ = 0.5π (u),
1.1π (dashed), 2.2π (dash-dotted) and 3.3π (dotted).
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FIGURE 5. Test of distance between shock and sponges for (a) G and (b) Θ at M= 1.2,
Mt = 0.23 and Rλ ≈ 10.

recently put forward (Donzis 2012b), in which it was assumed that the shock,
locally, adjusts instantaneously to local flow conditions. This was referred to as the
quasi-equilibrium assumption. If conditions are such that QE is satisfied, a shock in a
turbulent flow can be treated as consisting of a collection of infinitesimal shocks each
obeying RH relations based on local flow conditions. For QE to be valid, the time
scale associated with the relaxation of the shock to a new incoming condition should
be much shorter than changes in upstream conditions produced by the turbulence.
We showed (Donzis 2012b) that this is justified when K � 1 which is satisfied for
virtually all cases in the literature. The main advantage of QE is that it provides a
framework in which well-known laminar results can be used to analytically compute
mean variables in STI. In this section we use QE to provide analytical results for
thermodynamic jumps across the shock. For strong turbulence, however, we first
need to introduce a generalization of the analysis (Donzis 2012b) which requires a
redefinition of integrals to compute statistical moments across planes parallel to the
shock surface.

Consider a shock in a uniform flow and a quantity q that depends on the upstream
Mach number, M, that is q = q(M). In the presence of turbulent fluctuations, QE
allows one to still write q as a function of the local instantaneous Mach number, that
is q = q(M + m) where m is the fluctuating Mach number. In general, the nth-order
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Shock–turbulence interactions at high turbulence intensities 823

moment of q is given by the integral

〈qn
〉 =

∫
∞

−∞

qn(M +m)fm(m) dm, (3.1)

where fm(m) is the probability density function (p.d.f.) of m. Note that M+m is to be
taken as the relative velocity between the shock and the upstream flow. Thus, while
here we consider a stationary shock, this formulation can account for moving shocks
by a simple Galilean transformation.

However, the actual functional form of q(M+m) may depend on whether the flow
is supersonic or subsonic. For example, in locations where the flow is supersonic
upstream of the mean location of the shock, the pressure will change according to the
RH relations. However, if the flow is subsonic (due to strong negative m fluctuations),
then RH relations are invalid. This, as argued in Donzis (2012b), creates holes in the
shock surface.

For the flow to be supersonic one needs M + m> 1 or, in terms of 1M =M − 1,
one needs m>−1M. Similarly subsonic regions correspond to fluctuations that satisfy
m<−1M. Thus, we split the integral in (3.1) as

〈qn
〉 =

∫
∞

−1M
(q>)nfm(m) dm+

∫
−1M

−∞

(q<)nfm(m) dm, (3.2)

where q> and q< are the functional form of q in supersonic and subsonic regions,
respectively. For short, the supersonic and subsonic integrals will be denoted by 〈qn

〉
>

and 〈qn
〉
<, respectively, that is

〈qn
〉 = 〈qn

〉
>
+ 〈qn

〉
<. (3.3)

One can, for example, compute moments of the fluctuating Mach number itself,
i.e. q=m, for which supersonic and subsonic expressions are the same (q> = q<). In
this case we have:

〈mn
〉
>
=

∫
∞

−1M
mnfm(m) dm, 〈mn

〉
<
=

∫
−1M

−∞

mnfm(m) dm. (3.4a,b)

Obviously, 〈m0
〉 = 1 and 〈m〉 = 0. Also note that by definition we can write the

turbulent Mach number as:

Mt =
√

3〈m2
〉

1/2
=
√

3
(∫

∞

−∞

m2fm(m) dm
)1/2

(3.5)

regardless of the specific velocity distribution.
It is well known that the velocity field in isotropic turbulence is generally well

represented by a Gaussian distribution (Batchelor 1953; Monin & Yaglom 1975).
This is indeed the case for our data as seen in figure 6 where we show even
moments of the streamwise velocity component and Mach number from our DNS
database. Gaussian values are included as horizontal dashed lines for reference. We
also see a slight sub-Gaussian behaviour for very high orders which has also been
observed before (Noullez et al. 1997; Jimenez 1998). In any case, our results will
rely on at most second-order statistics for which a Gaussian behaviour is an excellent
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FIGURE 6. Even moments of (a) velocity fluctuation 〈un
〉/〈u2
〉

n/2 and (b) Mach number
fluctuation 〈mn

〉/〈m2
〉

n/2 as functions of K at location 1 for all the simulations in tables 1
and 2: M = 1.1 (circles), M = 1.2 (squares) and M = 1.4 (diamonds). Open and closed
symbols are for IT and SDT simulations. From bottom to top n = 4, 6 and 8. Dashed
lines correspond to Gaussian values at 3, 15 and 105, respectively.

0.4

Mt/ÎM

Ps

0.3

0.2

0.1

0 1 2 3 4

FIGURE 7. Probability of subsonic regions upstream of the shock. Solid line: theoretical
Ps = P(m<−1M) with Gaussian p.d.f. for m. Symbols for DNS data at Rλ ≈ 5 (stars),
Rλ ≈ 10 (circles), Rλ ≈ 25 (squares), Rλ ≈ 45 (diamonds) and Rλ ≈ 65 (plus signs). Open
and closed symbols are for IT and SDT simulations, respectively. Grey dashed line at
Mt/1M = 0.6 for reference.

approximation. For reference, the first few truncated moments of m for a Gaussian
distribution are shown in appendix A.

In Donzis (2012b) we argued that, consistent with QE, holes in the shocks are
caused by locally subsonic conditions. Then 〈m0

〉
< would represent the fraction of

the shock with subsonic regions and, thus, holes. This analytical form is shown in
figure 7. One can see that the subsonic fraction upstream of the shock is negligible
for Mt/1M . 0.6 but grows quickly with Mt/1M beyond that. Thus, one expects to
observe holes only at Mt/1M & 0.6 (Donzis 2012b) in what is now called the broken
regime. This criterion has indeed been supported by more recent DNS data (Larsson
et al. 2013). In the figure we also include results from our own DNS taken as the
fraction of subsonic regions observed at x1. The excellent agreement supports both
the Gaussian assumption for m as well as the criterion Mt/1M= 0.6 to delineate the
boundary between wrinkled and broken regimes. The last column in tables 1 and 2
indicates the regime based on this criterion.
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FIGURE 8. (a) Pressure and (b) density profile of normal shocks interacting with isotropic
turbulence at M= 1.2, Rλ ≈ 25 and Mt = 0.12 (solid), 0.21 (dashed), 0.32 (dashed-dotted)
and 0.44 (dotted). Grey lines correspond to the laminar inviscid limit, namely, RH jumps.

3.2. Analytical solutions of turbulent shock jumps
3.2.1. Density, pressure and temperature

The Rankine–Hugoniot relations, which relate upstream and downstream conditions
of a shock in a uniform flow, are a function of M alone. In turbulent flows, however,
fluctuations are found to modify these jumps, an effect that is more prominent as
the strength of turbulence increases. This can be seen in figure 8 where we plot the
distributions of pressure and density for different values of Mt. As Mt increases the
jumps weaken compared to RH jumps (horizontal dotted lines) at a fixed M. These
results demonstrate that thermodynamic jumps depend not only on the mean flow but
also on turbulent fluctuations. This effect is not captured by classical theories such
as LIA whose results depend only on M. Our objective here is to obtain analytical
solutions for jumps of thermodynamic variables that can account for the effects of
turbulence.

Consider first the ratio of mean density upstream and downstream of the shock, that
is, 〈ρ2′〉/〈ρ1〉. To compute this ratio we will obtain 〈ρ1〉 and 〈ρ2′〉 in turn. We first note
that in general the mean density ahead of a shock depends on the levels of fluctuations.
A convenient way to account for this is to write the instantaneous density upstream
of the shock in terms of stagnation conditions,

ρ1 =

[
γ − 1

2
(M +m)2 + 1

]−1/(γ−1)

ρ01, (3.6)

where subscript 0 indicates a stagnation property. If fluctuations are isentropic, then
ρ01 would be a constant across a plane parallel to the shock (over which averages
are taken) independent of local Mach number fluctuations. This is in fact a very
reasonable approximation for fluctuations not very far from the mean (Donzis &
Jagannathan 2013) and will, thus, be adopted here.

Expanding (3.6) in Taylor series around the mean Mach number yields:

ρ1 = ρ1|m=0 +

(
∂ρ1

∂m

)
m=0

m+
1
2

(
∂2ρ1

∂m2

)
m=0

m2
+ · · · , (3.7)

whose average can then be computed by

〈ρ1〉 =

∫
∞

−∞

ρ1 fm(m) dm. (3.8)
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826 C. H. Chen and D. A. Donzis

Combining (3.6)–(3.8) and a Gaussian fm(m) (see table 3) we can obtain the final form
for the mean upstream density:

〈ρ1〉 =M−1/(γ−1)ρ01 +
1
12M

(−2γ+1)/(γ−1)
[(γ + 1)M2

− 2]ρ01M2
t , (3.9)

where, for simplicity in notation, we have defined M≡ (γ −1)M2/2+1. The first term
in (3.9) corresponds to the laminar contribution while the second term corresponds to
turbulence effects which depend explicitly on both M and Mt. Clearly, as M→∞ or
Mt→ 0, the second term vanishes, as expected.

Under the QE assumption, the density immediately downstream of the shock (i.e.
location 2′) will be given by RH expressions using the local Mach number, that is

ρ>2′ =
(γ + 1)(M +m)2

(γ − 1)(M +m)2 + 2
ρ1. (3.10)

The superscript > has been added to emphasize that shock relations are valid only for
supersonic regions. Using (3.6), the expression becomes:

ρ>2′ =

[
(γ + 1)(M +m)2

(γ − 1)(M +m)2 + 2

] [
γ − 1

2
(M +m)2 − 1

]−1/(γ−1)

ρ01. (3.11)

In subsonic regions this expression is clearly invalid and, thus, averages need to be
taken using the split form in (3.3). For subsonic regions, where shock holes appear,
one can assume that variables will approximately retain their upstream value. That
is, ρ<2′ ≈ ρ1. This assumption is indeed supported by observations of instantaneous
density profiles in the broken regime (e.g. Larsson & Lele 2009). Hence, the average
downstream density is given by:

〈ρ2′〉 = 〈ρ
>
2′ 〉

>
+ 〈ρ1〉

<. (3.12)

Again, using Taylor series for (3.11) and substituting into (3.12) one can integrate the
expressions analytically with fm(m) Gaussian, to obtain

〈ρ2′〉 =

[
(γ + 1)M2

(γ − 1)M2 + 2

]
M−1/(γ−1)ρ01〈m0

〉
>
−
γ + 1

2
M(M2

− 2)M(−2γ+1)/(γ−1)ρ01〈m〉>

+
γ + 1

8
M(−3γ+2)/(γ−1)

[(γ + 1)M4
− (6γ + 4)M2

+ 4]ρ01〈m2
〉
>

+M−1/(γ−1)ρ01〈m0
〉
<
−MM−γ /(γ−1)ρ01〈m〉<

+
1
4
M(−2γ+1)/(γ−1)

[(γ + 1)M2
− 2]ρ01〈m2

〉
<, (3.13)

which, though very complicated, provides an analytical closed form for the mean
density downstream of a shock as a function of both M and Mt.

Thus the density jump across a shock in a turbulent flow with mean Mach number
M and turbulent Mach number Mt can be written as

〈ρ2′〉

〈ρ1〉
= gρ(M,Mt), (3.14)

where gρ(M,Mt) is the ratio of (3.13) and (3.6).
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FIGURE 9. Mean density jumps from IT (squares) and SDT (circle) simulations at M=1.1
(dark), 1.2 (medium) and 1.4 (light). Other symbols are for Larsson & Lele (2009) (C),
and Larsson et al. (2013) (B). Solid lines correspond to the analytical solution (3.14) at
M = 1.1, 1.2, 1.28, 1.4, 1.5 and 1.87 (bottom to top). Grey dashed line at Mt/1M = 0.6
separates the wrinkled (W) and broken (B) regimes.

In figure 9 we show 〈ρ2′〉/〈ρ1〉 from DNS data as a function of Mt along with (3.14).
We see very good agreement between DNS data from various sources (symbols) and
the theoretical prediction (solid lines). As expected, laminar conditions are recovered
as the turbulent Mach number decreases which is seen as solid lines approach their
asymptotic RH value at Mt→ 0. It is interesting to note that the effect of turbulent
fluctuations depends on the mean Mach number as well. In particular, stronger
turbulence effects are observed at higher M. This suggests an interaction between
means and fluctuations which is not accounted for in classical theories such as
LIA. For relatively high M, an increase in turbulence intensity measured by Mt,
results in weakened jumps relative to the laminar situation consistent with previous
observations (Larsson et al. 2013). It is worth mentioning here, that mean jumps
are unaffected by turbulence within LIA and can thus not capture this behaviour.
Predictions using RDT, in turn, were also found (Larsson et al. 2013) to remain only
qualitatively consistent with the data. The quantitative agreement between (3.14) and
data observed in figure 9, thus, provides support to the adequacy of the QE coupled
with the isentropic assumption of upstream fluctuations to capture this two-way
coupling.

We also see a qualitative change in the effect of turbulence as M decreases.
For relatively weak shocks (low M) the theory predicts stronger shock jumps as
turbulence intensity increases. Our DNS data do indeed show a consistent, though
small, increase with Mt. This low-M conditions may be important in situations around
transients crossing sonic conditions such as bodies, vanes or blades accelerating to
supersonic speeds or decelerating to subsonic speeds. At M ≈ 1.2, jumps appear to
be only weakly affected by turbulence with jumps remaining fairly constant with Mt.
This transition M, however, is not general and depends on the value of γ .

In figure 9 we also show a (dashed) line at constant Mt/1M= 0.6 which separates
the wrinkled (denoted W in the figure) and broken (denoted B) regimes (Donzis
2012b). Conditions to the left of the WB line correspond to wrinkled interactions
where the planar shock retains its structure and is only mildly distorted by the
relatively weak incoming turbulent fluctuations. To the right of that line, the
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FIGURE 10. Mean pressure and temperature jumps from IT (squares) and SDT (circles)
simulations, Lee et al. (1993) (D), Larsson & Lele (2009) (C) and Larsson et al. (2013)
(B). Solid lines correspond to the analytical solution (A 5) at M= 1.1, 1.2, 1.28, 1.4, 1.5
and 1.87 (bottom to top). Grey dashed line at Mt/1M = 0.6 separates the wrinkled (W)
and broken (B) regimes.

interaction is in the broken regime where holes appear across the shock. As Mt

is increased further, which implies also high K, the fundamental assumptions behind
QE will become progressively less applicable. These include the inability of the
shock to adjust instantaneously to changing conditions due to turbulence fluctuations
(Donzis 2012b) as well as strong three-dimensional effects. This can explain the
discrepancy seen between theory and DNS data for high-Mt low-M interactions in
figure 9.

Following the same procedure described above, one can obtain expressions for 〈p1〉,
〈p2′〉, 〈T1〉 and 〈T2′〉. The final result is

〈p2′〉

〈p1〉
= gp(M,Mt), (3.15)

〈T2′〉

〈T1〉
= gT(M,Mt). (3.16)

The details of the derivation and final expressions can be found in appendix A.
The comparison between DNS data and (3.15) and (3.16) is shown in figure 10.

Again, good agreement is observed at a range of Mt. While the behaviour of pressure
is very similar to that of density we see that that of temperature is not. In fact,
trends appear inverted: at low M effects are stronger and jumps become larger as Mt

increases. At high M, effects are weaker and there is a slight decrease in jumps as
Mt increases.

3.2.2. Comparison to Rankine–Hugoniot relations
While it has been argued in the literature that stronger turbulence leads to weakened

shock jumps (Larsson & Lele 2009), the data presented here suggest a more complex
interaction. In particular, whether turbulence weakens or strengthens shock jumps
depends on the specific combination of Mt and M. The theoretical results here can,
in fact, provide the necessary guidance to understand this observation. Consider the
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FIGURE 11. Relative departures from RH jumps for (a) density Rρ(M,Mt), (b) pressure
Rp(M,Mt) and (c) temperature RT(M,Mt) at Mt = 0.1, 0.3, 0.5 and 0.8. Grey dashed line
at Mt/1M = 0.6 separates the wrinkled (W) and broken (B) regimes.

relative change of the density jump 〈ρ2′〉/〈ρ1〉 = gρ(M, Mt) with respect to the RH
jump, gRH

ρ (M):

Rρ(M,Mt)=
gρ(M,Mt)− gRH

ρ (M)
gRH
ρ (M)

. (3.17)

This function, which with (3.14) is known analytically, provides direct information
of the effect of turbulence on the jumps of mean thermodynamic quantities. This is
shown in figure 11(a) where we can now clearly see that turbulence effects on jumps
depend on both M and Mt. In general for low M, an increase of turbulence intensity
(Mt) leads to stronger shocks (Rρ(M,Mt) > 0) relative to RH, or equivalently a shock
in a uniform laminar flow at the same M. However, as M increases Rρ(M,Mt) changes
sign and jumps become weaker. At higher M, Rρ(M, Mt) decrease monotonically
towards zero from below indicating a vanishing turbulence effect as M → ∞.
A similar general behaviour is observed for the similarly defined Rp(M, Mt) and
RT(M,Mt) shown in figure 11.

Two characteristic Mach numbers can now be identified for Rρ(M, Mt). First,
Mρ

cr(Mt) is the critical Mach number at which Rρ(M, Mt) changes sign. This can
be readily found by solving Rρ(M, Mt) = 0 numerically for fixed Mt. The result
is shown in figure 12(a) along with the critical Mach numbers for pressure and
temperature. We see that, while qualitatively similar, the critical Mach number is
numerically different for ρ, p and T . Conditions below and above the corresponding
Mcr(Mt) lines represent stronger and weaker shock jumps respectively for the different
thermodynamic variables. We can also see that the critical Mach number appears
mainly in the broken regime.

An interesting prediction by the theory is the existence of conditions at which
pressure and density jumps are weakened by turbulence (M > Mρ

cr and M > Mp
cr)

while temperature jumps are strengthened (M < MT
cr). This is indeed supported by

our DNS data at Mt = 0.39 and M = 1.2 where temperature experiences an increase
stronger than RH while pressure and density experience a weaker-than-RH increase
across the shock. This is seen in figure 13(a) where we plot DNS data for this case
along with corresponding RH jumps. In figure 13(b) we show a condition where all
thermodynamic variables experience a stronger-than-RH jump due to turbulence.

A second characteristic Mach number is the location of the minimum observed
for given Mt in figure 11. This corresponds to the condition at which the largest
turbulent effects are observed, and are denoted by Mρ

m(Mt), Mp
m(Mt) and MT

m(Mt) for
density, pressure and temperature, respectively. These can be obtained by solving
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FIGURE 12. (a) Critical Mach numbers (MX
cr(Mt)) for density (X = ρ, solid), pressure

(X = p, dashed) and temperature (X = T , dash-dotted). Grey dashed line at Mt/1M = 0.6
separates the wrinkled (W) and broken (B) regimes. (b) Maximum weakening of shock
jumps due to turbulence measured as the maximum relative departure from RH relations
for density (X = ρ, solid), pressure (X = p, dashed) and temperature (X = T , dash-dotted)
for a given Mt.
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FIGURE 13. Variation of normalized pressure (solid, q= p), density (dashed, q= ρ) and
temperature (dash-dotted, q= T) across the shock. (a) (M,Mt, Rλ)≈ (1.2, 0.39, 13) which
corresponds to M <MT

cr and M >Mp
cr,Mρ

cr Inset: detailed view of temperature around x2′ .
(b) (M,Mt,Rλ)≈ (1.1, 0.29, 10) which corresponds to M<MT

cr,Mp
cr,Mρ

cr. Grey solid lines
represent the laminar inviscid limits. Vertical grey dashed lines indicate the location of x2′ .

∂Rρ(M, Mt)/∂M = 0 and similar equations for density and pressure. The result is
shown in the inset of figure 12(a). Mm(Mt) also is mainly in the broken regime
though the three thermodynamic quantities lie close to each other and to the WB
line. However, for higher Mt we see MT

m(Mt) grows substantially indicating that the
strongest turbulence effect on temperature moves to higher values of M.

The analysis here also suggests that, for a fixed Mt, there is a bound on how much
a shock can be weakened by turbulence. This is given by the minimum value of
Rρ(M, Mt) (Rρ,m for short), which occurs at the second characteristic Mach number,
that is Rρ,m ≡ Rρ(Mρ

m(Mt),Mt). This quantity is shown in figure 12(b) where we see
that pressure jumps can be of the order of 30 % weaker at high Mt. Weakening of
temperature jumps however, are much smaller, staying below ∼5 % for the Mach
numbers studied here. The Mach number at which this maximum effect is realized
can be obtained from figure 11 or the full analytical expressions.

3.2.3. Entropy
Finally we turn to entropy which is also expected to contain both laminar and

turbulent contributions. As before, one use QE to obtain the mean entropy jump across
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a shock as:
〈1s〉 = 〈1s<〉< + 〈1s>〉>. (3.18)

For supersonic regions, the standard entropy jump is Cp ln(T2′/T1)−R ln(p2′/p1) which
can also be written as

1s> =Cp(ln T2′ − ln T1)− R(ln p2′ − ln p1). (3.19)

The different terms can be computed as before. For example, the logarithm of the
instantaneous temperature in terms of M and m is

ln T1 = ln

([
γ − 1

2
(M +m)2 + 1

]−1

T01

)
, (3.20)

which upon expanding in Taylor series and averaging leads to:

〈ln T1〉
>
= ln(M−1)〈m0

〉
>
−

2(γ − 1)M
(γ − 1)M2 + 2

〈m〉>

+
(γ − 1)[(γ − 1)M2

− 2]
[(γ − 1)M2 + 2]2

〈m2
〉
>
+ ln T01〈m0

〉
>. (3.21)

We can similarly obtain 〈ln T2′〉
>, 〈ln p1〉

> and 〈ln p2′〉
>.

For subsonic regions where there is no shock, the entropy increase will be
solely due to the dissipative nature of turbulence. Obukhov (1949) showed that
entropy generation due to turbulent fluctuations in temperature is proportional to
the temperature variance. Specifically he showed that when the flow decays from
a state characterized by a temperature variance 〈T ′2〉, the total entropy increase is
〈1s〉 ≈Cp〈T ′

2
〉/〈T〉2. In the present case, turbulence will not be completely dissipated

as it crosses the shock region and reaches x2′ . However, it is still expected that the
entropy increase will be proportional to the variance of temperature of the incoming
flow. Furthermore, this variance can be written in terms of the turbulent Mach number
as 〈T ′2〉/〈T〉2 ≈ (A2/9)(γ − 1)2M4

t (Donzis & Jagannathan 2013). Thus, for holes one
can expect

1s< = αsCp(γ − 1)2M4
t , (3.22)

where all prefactors are absorbed in the constant αs.
Finally, with (3.19) and (3.22) we take the conditional averages for the two regions

as in (3.18) to obtain
〈1s〉
Cp
= gs(M,Mt). (3.23)

The final expressions that comprise the function gs(M, Mt) are explicitly shown in
appendix A.

The DNS data of entropy jump across the shock along with the theoretical
prediction (3.23) are shown in figure 14. The comparison shows good agreement
though there is some scatter in the data. At very low Mt, the change of entropy is
due entirely to the well-known laminar jumps (Thompson 1984). As Mt increases, we
see a substantial increase in entropy production in both DNS data and the theoretical
prediction (3.23).

The theoretical result approaches an asymptotic M4
t at high Mt indicating that

turbulence entropy generation becomes the dominant contribution. Note that the
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FIGURE 14. Mean entropy increase from IT (p) and SDT (u) simulations. Solid lines
correspond to the analytical solution (3.23) at M= 1.1, 1.2, and 1.4 (bottom to top) with
αs= 1.176. Grey dashed line at Mt/1M= 0.6 separates the wrinkled (W) and broken (B)
regimes.

supersonic regions also contains ‘turbulence effects’: this is seen, for example, from
the second term in (3.21) which vanishes as the incoming flow fluctuations weakens
(Mt→ 0). However, the asymptotic behaviour of these terms is a weaker power law
than M4

t . Furthermore, the entropy increase through shock holes is independent of the
mean Mach number as it only reflects entropy production due to turbulent dissipation.
Thus, the observed decreasing gap between curves at different M as Mt increases is
also supportive of an increasingly dominant contribution from turbulent decay.

3.2.4. Remarks
We conclude this section with a few remarks about the generality of the results

above. First, we note that there is a negligible Reynolds number effect for mean
jumps. This is not unexpected since RH jumps can be shown to be the same in
viscous or inviscid flows – molecular transport properties (viscosity and thermal
conductivity) only determine the structure of the shock (Zeldovich & Raizer 2002).
Thus, the sole dependence on M and Mt in (3.14)–(3.16) is indeed a very general
form, under QE, for jumps. Second, we note that there is little difference between
jumps in isotropic and anisotropic turbulence. This suggests that the QE assumption,
based on locally one-dimensional shock, does provide an accurate description even
with relatively strong turbulence. Finally, we stress that conclusions here result
from calculating quantities at x2′ which can be argued to be still unaffected by
turbulent mixing downstream of the shock. At x2, however, quantities are expected
to be affected by turbulence processes and, indeed, Reynolds number effects have
been observable (Andreopoulos et al. 2000; Donzis 2012a). These observations are
consistent with separate regions, one where the flow is dominated by ‘shock effects’
(x < x2′), and another one where it is dominated by ‘turbulence effects’ (x > x2).
The region x2′ < x < x2 can then be thought of as a transition region where the
fully developed incoming turbulence has been deeply distorted by the shock and is
evolving towards its fully developed state. Although our data support this picture, it
is unclear to what degree actual flows consist of ‘pure’ regions dominated exclusively
by one of these processes. Detailed investigations of this conceptual picture and the
relative dominance of different process in each region are worth pursuing, but beyond
the objectives here.
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3.3. Shock structure
The effects of turbulence on shock characteristics have been studied theoretically in
the literature (Ribner 1954a,b; Williams & Howe 1973; Zank et al. 2002; Wouchuk,
de Lira & Velikovich 2009) and observed experimentally (Hesselink & Sturtevant
1988) and numerically (Lee et al. 1993; Larsson & Lele 2009). These investigations
helped identified two regimes – wrinkled and broken – which result from different
levels of turbulence intensity. The former corresponds to an interaction in which
the shock retains its structure as a sharp gradient over a weakly modified uniform
shock plane. The latter corresponds to a strongly modified shock plane with ‘holes’
through which properties may change smoothly or have multiple peaks (Hesselink &
Sturtevant 1988; Lee et al. 1993).

A quantitative metric that has been used to characterize inhomogeneities in the
structure of the shock is the r.m.s.-to-mean dilatation at the shock (Lee et al. 1993;
Larsson & Lele 2009)

Θ =

(
〈θ 2

s 〉s

〈θs〉
2
s

− 1
)1/2

, (3.24)

where θs is the dilatation at the shock location which is identified as the largest
negative value of dilation along the streamwise direction x for a given location (y, z).
That is, θs(y, z) = minxθ(x, y, z). Note that since the location where θ attains its
minimum is, in general, different for different locations (y, z), the averages in (3.24)
are not over planes at fixed x, but instead over all θs(y, z) – we use the additional
subscript s in 〈·〉s, to differentiate it from plane averages 〈·〉. DNS data presented
below are also time averaged.

Following Donzis (2012b), one can write the maximum negative dilatation at the
shock as θs ≈ JuK/δt where JuK is the velocity change across the shock and δt the
shock thickness which, to leading order, can be written as (ρc/µ)JuK(1M+m). Using
unconditional averages over the entire surface and assuming JuK is, to leading order,
not affected by fluctuations, QE leads to 〈θs〉s ∼ (〈ρ1〉〈c1〉/〈µ1〉)JuK1M and 〈θ 2

s 〉s ∼

(〈ρ1〉〈c1〉/〈µ1〉)
2JuK2(1M2

+M2
t /3) which, when used in (3.24), leads to:

Θ ≈
1
√

3

Mt

1M
. (3.25)

This has been shown to provide good collapse of the existing data (Donzis 2012b;
Boukharfane, Bouali & Mura 2018). However, equation (3.25) is expected to be
accurate only when turbulence is relatively weak. This is indeed the case as seen in
figure 15, where we show Θ for the present data (in colour) along with other existing
data. The dash-dotted line is (3.25) while the solid line contains the next-order term
in the expansion (Donzis 2012b), that is Θ ≈ e1Mt/1M + e2(Mt/1M)3 where e1 and
e2 are fitting constants. There is good agreement between the data and the theory in
the wrinkled regime (Mt/1M . 0.6) consistent with previous studies (Donzis 2012b;
Boukharfane et al. 2018).

As Mt/1M increases, however, departures are apparent with two interesting
features. First we see that, in spite of significant scatter, Θ seems to approach
an asymptotic value (Θ∞) at high Mt/1M with a value dependent on the Reynolds
number. Second, DNS data depart from the QE prediction at higher Mt/1M when
Rλ is high. This effect does not appear to be due to the increase of holes in the
shock since figure 7 shows that the fraction of subsonic regions does not depend on
Rλ. A potential explanation for this effect is that at low Rλ, stronger viscous effects
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0.5

1.0

1.5

Œ

Mt/ÎM

FIGURE 15. (Colour online) R.m.s.-to-mean dilatation at the shock for Rλ≈ 5 (red stars),
Rλ ≈ 10 (green circles), Rλ ≈ 25 (blue squares), Rλ ≈ 45 (magenta diamonds), Rλ ≈ 65
(cyan pluses). Open and closed symbols are for IT and SDT simulations, respectively.
Vertical grey dashed line at Mt/1M= 0.6 for reference. Horizontal dashed lines: average
of DNS data at high Mt/1M for Rλ ≈ 5, 10, 25, 45 and 65 from bottom to top. Other
symbols: Jamme et al. (2002) (×), Larsson & Lele (2009) (C) and Boukharfane et al.
(2018) (B).

enhance transverse diffusion of momentum which would make the one-dimensional
local behaviour assumption in QE less applicable. However, a thorough verification
of this explanation requires more data at a wide range of parameters.

Before we discuss the asymptotic value Θ∞, it is instructive to see the structure
of the flow as it crosses the shock. In figure 16 we show, for three different cases,
plane-averaged dilatation along the streamwise direction (dark line) with a set of
instantaneous dilatation profiles at some arbitrary locations (light grey lines). In
(a) we show a wrinkled case (though close to broken limit) with a very strong
mean dilatation comprised of similar instantaneous profiles. At higher Mt/1M in
the broken regime (b) we also see a strong peak though spatially broader, consistent
with theoretical predictions (Donzis 2012b). Individual dilatation profiles, however,
display a wider range of behaviours: some have the same qualitative peak while
others present multiple peaks or a very broad smooth variation (Lee et al. 1993;
Larsson & Lele 2009). At even higher values of Mt/1M (c) individual profiles show
very large fluctuations upstream and downstream of the shock comparable to the
mean (dark line). It is interesting to note that while fluctuations in this case are of
the same order as the mean, the latter still shows the same peak as, although much
broader than, in the wrinkled regime.

Typical distributions of Reynolds stresses and mean pressure are shown in figure 17
at similar conditions. In (a) and (b) we see that, consistent with observations in the
literature, the downstream peak of R11 at x2 decreases with Mt. As Mt increases
further, we observe both the peaks upstream and downstream of the shock (x1 and x2,
respectively) vanish. We term this, then, the ‘vanished’ regime. Clearly in this regime,
it is not possible to compute amplification factors since no upstream and downstream
locations can be identified unambiguously as Reynolds stresses undergo a classical
turbulent decay. It is interesting that other mean quantities such as mean pressure
(c,d) or mean velocity retain the typical qualitative behaviour of a shock. While these
mean gradients may lead to production by mean shear in the Reynolds stress budget,
because of the short residence time within the shock region, they cannot, on average,
counteract the viscous decay.
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FIGURE 16. Instantaneous dilatation normalized by laminar condition (θl) along the
streamwise direction at different transverse locations (grey) and their mean (black) at
M= 1.1, Rλ ≈ 10 and (a) Mt = 0.05 (wrinkled), (b) Mt = 0.14 (broken) and (c) Mt = 0.34
(vanished).

Furthermore, since in the vanished regime no x1 location can be identified, it is also
not possible to determine Rλ, Mt or 1M upstream of the shock. Alternatively, one
can estimate them by assessing the limit at which local extrema vanish for R11. For
example, for Rλ≈5, 10 and 25, we find that the vanished regime appears at Mt/1M≈
2.14, 3.4 and 4.4, respectively. In these three cases, K is found to be very close to 1.0.
This is, in fact, not unexpected. As we show below, the amplification factor for R11
shows a universal behaviour with K for relatively high K. In particular, it decreases
with K and reaches values around 0.8 at K ≈ 1. Beyond this value of K no local
extrema are observed and amplification factors cannot be obtained.

We now get back to the asymptotic value Θ∞. As Mt/1M increases, increasingly
large areas of the shock are subsonic and present holes. However, it is unclear
what the value of θs is across holes. Furthermore, as turbulence becomes more
intense, the flow will experience stronger locally three-dimensional effects which
will favour strong mixing in all directions and thus weaken the applicability of QE.
According to the definition of Θ one searches for the largest negative dilatation
around the location of the shock along x for a given (y, z) location. When turbulence
is strong (see instantaneous profiles in figure 16c), one would expect Θ to be
essentially dominated by turbulence statistics and we can then use known scaling
laws for velocity gradients. However, Θ is based on the average of the minimum
dilatation close to the average location of the shock. While the mean dilatation in
isotropic turbulence is zero, the average of minimum dilatation across an arbitrary
plane is not. Thus, we make the additional assumption that these values are, to first
approximation, proportional to the average magnitude of those gradients. Moments
of velocity gradients are known to scale as power laws with the Reynolds number
(Monin & Yaglom 1975): 〈|∂u/∂x|n〉 =Cn(u1,rms/L)nR2dn

λ where Cn are flow-dependent
constants and dn are the so-called scaling exponents. While these power laws have
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FIGURE 17. Distributions of R11 at M= 1.1, (a) Rλ≈ 10 and Mt= 0.05 (solid), Mt= 0.14
(dashed) and Mt = 0.34 (dash-dotted) and (b) Rλ ≈ 25 and Mt = 0.22 (solid), Mt = 0.3
(dashed) and Mt=0.44 (dash-dotted). Distribution of p at (c) Rλ≈10 and Mt=0.05 (solid),
Mt = 0.14 (dashed) and Mt = 0.34 (dash-dotted) and (d) Rλ ≈ 25 and Mt = 0.22 (solid),
Mt = 0.3 (dashed) and Mt = 0.44 (dash-dotted).

been historically believed to hold only for high Reynolds numbers, recent work
suggests that their applicability extends to rather low Reynolds numbers (Schumacher,
Sreenivasan & Yakhot 2007; Schumacher et al. 2014; Yakhot & Donzis 2017). We
then estimate Θ∞, when turbulence dominates, as

Θ∞ ≈

(
〈|∂u/∂x|2〉
〈|∂u/∂x|〉2

− 1
)1/2

≈ c1(c2R2(d2−2d1)
λ − 1)1/2, (3.26)

where all order-unity prefactors have been absorbed in the constants c1 and c2.
The exponents have been studied extensively and are relatively well known (e.g.
Schumacher et al. 2007; Yakhot & Donzis 2018) with values d2 = 1 and d1 = 0.46.

In figure 18 we show Θ∞ from DNS along with (3.26) with c1 = 1.756 and
c2= 0.8217 obtained as best-fit coefficients indeed of order unity. The good agreement
between theory and DNS supports the idea of Θ being dominated by turbulence rather
than the shock at those conditions. At the same time from figure 7 we see that even
for Mt/1M ≈ 3 the subsonic regions are only approximately 30 % of the shock area.
Thus, the dominance of turbulence appears to stem from strong turbulent mixing
across and after the weak shock.

4. Amplification factors

As we have shown, turbulent flows can significantly affect jumps in thermodynamic
variables as well as statistical features of the shock structure. Simultaneously,
the occurrence of a shock also affects the characteristics of turbulent flows. A
useful quantity to characterize these changes is the so-called amplification factor,
G ≡ R11,2/R11,1. The main rationale behind selecting x2 as the downstream location
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102101
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Œ∞

FIGURE 18. (Colour online) Asymptotic value of Θ as a function of Rλ. Different
symbols represent the average of DNS data at a fixed Rλ in the asymptotic state (see
text). Symbols as in figure 15. Solid line is (3.26) with c1 = 1.756 and c2 = 0.8217.

(Donzis 2012a and references therein; Ryu & Livescu 2014; Boukharfane et al. 2018)
is that, as discussed in § 2.3, the flow undergoes a viscous decay beyond that location
where inviscid assumptions are less justified. Here we follow this convention and use
x2. We note, however, that other methods have also been proposed (e.g. Larsson &
Lele 2009, where Reynolds stresses are extrapolated to the mean shock location in
an attempt to account for the viscous decay).

When data available in the literature are examined collectively, it is clear that
G depends not only on M (as predicted by LIA) but also on the turbulent Mach
number and the Reynolds number (Andreopoulos et al. 2000; Donzis 2012a). In
Donzis (2012a) we proposed an alternative parameter to characterize the interaction
(K) defined as

K ≡ δl/η, (4.1)

where δl is the shock thickness at a uniform Mach number, M. As K decreases, the
shock becomes increasingly smaller relative to turbulence scales. One would, then,
expect the interaction to approach the conditions in which LIA is applicable, that is
when the shock is a discontinuity interacting with very weak fluctuations in an inviscid
flow (low Mt and high Rλ). Indeed, recent well-resolved simulations (Ryu & Livescu
2014) support this limiting expectation. Our interest here, however, is in the case of
finite Mt and Rλ where both parameters play a role. Using classical scaling arguments,
one can also write K=Mt/R

1/2
λ 1M (Donzis 2012a), an expression that was also used

in other contexts to assess resolution in DNS (Moin & Mahesh 1998).
Figure 19 shows the amplification factor for all the DNS database presented here

(in colour) along with other amplification factors in the literature. In (a) we show
G as a function of 1M, the only parameter that controls the interaction within LIA.
Wide differences are seen between the LIA prediction (solid line) and data. As
pointed out before (Donzis 2012a) these departures are systematic in Rλ and Mt but
disappear when data are plotted against K. This is shown in figure 19(b) where we
see a high degree of collapse of the new and earlier data onto a single curve at high
K which is well represented by a power law of the form G≈ 0.75K−1/4 proposed in
Donzis (2012a). As pointed out above, as K→ 0, we have δl� η and one expects to
recover conditions in which LIA applies. Ryu & Livescu (2014) indeed observed this
trend. Thus, data suggest a universal behaviour of amplification factors with K, with
a Mach-number-dependent asymptotic state as K→ 0. At high K, the amplification
factor is seen to go below unity, a possibility suggested before (Donzis 2012a),
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FIGURE 19. (Colour online) (a) Collection of amplification factors of streamwise velocity
as a function of 1M along with LIA prediction (Ribner 1954b). (b) Same data as a
function of K =Mt/(R

1/2
λ 1M). Horizontal dashed lines: LIA prediction for M = 1.1, 1.2,

1.3, 1.4, 1.5 and 1.8 from bottom to top. In both panels red circles correspond to M= 1.1,
blue squares to M = 1.2 and green diamonds to M = 1.4. Open and closed symbols are
for IT and SDT simulations, respectively. Other symbols: Lee et al. (1993, 1997) (D),
Hannappel & Friedrich (1995) (+), Barre et al. (1996) (B), Mahesh et al. (1997) (A),
Jamme et al. (2002) (×), Larsson & Lele (2009) and Larsson et al. (2013) (C), Ryu &
Livescu (2014) (∗, grey levels for M = 1.1, M = 1.2 and M = 1.4 from light to dark),
Boukharfane et al. (2018) ( ) and Tanaka et al. (2018) (F, grey levels for M = 1.1,
M = 1.3 and M = 1.5 from light to dark).

which represents turbulence attenuation as it crosses the shock. Beyond K ≈ 1.0,
amplification factors cannot be defined as the extrema at x1 and x2 vanish, marking
the beginning of the vanished regime.

This transition between scaling laws based on different non-dimensional groups in
particular limits is observed in diverse physical phenomena from equations of states
near the critical point (Widom 1965) to flows in rough pipes (Goldenfeld 2006). In the
latter, Goldenfeld studied the transition from the well-known power-law dependence
of the friction coefficient on the Reynolds number to a Reynolds-number-independent
scaling law on the ratio of roughness to pipe diameter. In such cases, the dependence
on two parameters can be cast in terms of a reduced parameter under which data are
observed to collapse into a single universal curve. The data in figure 19(b) are very
suggestive of such a behaviour with a transition from K to M as K→ 0. Thus we
start by considering the general relation G= f1(K,1M) for some unknown function f1
and its observed limiting behaviour. At high values of K we observe a K−1/4 scaling;
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FIGURE 20. (Colour online) Universality of amplification factor based on the scaling (4.3)
for data with M < 2. Same colours and symbols as in figure 19. Inset: detailed view of
plateau with linear scale in the vertical axis.

at low values of K, G tends to LIA. Note that this imposes significant constraints on
the functional form for f1. For simplicity in the analysis we consider the behaviour
for M . 2 where the LIA solution can be approximated as a power law of the form
1M1/6 as shown in figure 19(a) with a dashed line. Following Widom (1965), we
propose the following scaling relation:

G=K−1/4f2(Kα1M), (4.2)

where α is an exponent to be determined by specific limits. Note that this is essentially
a case of incomplete similarity also justified from renormalization group theory
(Barenblatt 2003) where universality is revealed only under a suitable combination
of the original governing non-dimensional parameters, although this combination
cannot be obtained on dimensional grounds alone. Consistency with the 1M1/6

asymptotic behaviour requires that f2(x)∼ x1/6 as x→ 0 and, simultaneously, that the
K dependency must disappear. It is easy to see that G will become independent of
K in that limit if α = 3/2. The final result is then

G=K−1/4f2(K3/21M). (4.3)

The implication of this scaling is that while the phenomenon depends on the two
parameters K and 1M at two different limiting conditions, a collapse on a universal
curve will emerge if one plots G/K−1/4 as a function of K3/21M. This is indeed the
case as seen in figure 20 where we show data at M < 2, the condition at which the
scaling argument applies. We can see that, for example, the data from Ryu & Livescu
(2014) which depart from K scaling at different 1M (figure 19b) collapse onto the
line with a slope of 1/6. This low K behaviour is readily understood by recalling
that f2(x) ∼ x1/6 at small x which corresponds to G ∼1M1/6. At high K, G ∼ K−1/4

which under the normalization in the plot is seen as a horizontal line. Given the
number and variety of data sources and flow conditions collected here, combined
with the lack of systematic trends with Reynolds, turbulent and mean Mach numbers
individually, the collapse of the data is deemed very satisfactory. This is especially
so when one compares with figure 19(a) where the scatter around the theoretical
prediction is reduced by a factor of 3 and, more importantly, no systematic trends
with Rλ and Mt are observed.
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The transition from K-scaling to M-scaling allows us also to determine the
combination of parameters at which it occurs. From figure 20, we observe that
this transition happens at K3/21M ≈ 0.0055. Explicitly, we can then write

Ktr ≈
0.03
1M2/3

, (4.4)

which is found to be consistent with the data in figure 19(b), especially those
of Ryu & Livescu (2014) which clearly show the transition. We also point
out that (4.4) provides a precise meaning to the distinction between low-K and
high-K interactions, a classification that was put forth only in qualitative terms
(Donzis 2012a): amplification factors at K < Ktr could be well represented by LIA;
amplification factors at K > Ktr scale as G ≈ 0.75K−1/4. Equation (4.4) can also be
written as (δl/η)tr≈ 0.03/1M2/3 which emphasizes the fact that the transition depends
not only on the ratio of length scales. From figure 20 we see that the majority of
the data in the literature with M < 2 correspond to high-K interactions.

We close this section by noting that the amplification factor shows no systematic
difference between the two types of mechanisms used to generate turbulence here,
namely, IT and SDT (§ 2.2). Since the former is statistically isotropic while the latter
is not with longitudinal stresses R11 up to 64 % larger than transverse stresses R22
(table 2), data suggest that amplification of turbulence in the streamwise direction may
be dominated by one-dimensional processes in that direction. This is consistent with
the discussion in § 3.2 where it was argued that the dynamics in the region upstream
of x2′ is mainly determined by shock effects in QE. Fully developed turbulence, on
the other hand, is attained only at x2 beyond which well-known return-to-isotropy
processes (not accounted for in LIA) are expected to operate at relatively long time
scales (Larsson & Lele 2009; Larsson et al. 2013; Ryu & Livescu 2014; Livescu
& Ryu 2016). In light of these observations, it may not be entirely surprising the
virtually undetectable dependence of G on anisotropy in the incoming turbulence.

5. Summary and conclusions
We have investigated the interaction of a normal shock and turbulence with a focus

on high intensity turbulence levels. We presented theoretical results on turbulent
jumps of mean thermodynamic quantities, shock structure and amplification factors,
all supported by a large database of new high-resolution shock-resolving DNS at a
wide range of Mt(0.02 − 0.54) and Rλ(5 − 65), and mean Mach numbers, M, up
to 1.4.

A number of theoretical results were presented using the quasi-equilibrium
assumption (Donzis 2012b). Under such an assumption, the shock responds
instantaneously to local changes in upstream conditions due to turbulent fluctuations.
When turbulent fluctuations are strong enough, the flow can become subsonic locally.
In Donzis (2012b) we proposed this to be the origin of so-called holes in the shock,
a situation commonly referred to as the broken regime of the interaction which
emerges when Mt/1M & 0.6. Here we presented DNS data that quantitatively support
the assertion that beyond this threshold subsonic regions become rapidly apparent,
leading to a broken regime.

We presented analytical expressions for mean jumps across the shock using the
QE approximation, in which standard RH jumps are valid locally. The resulting
functions depend on both M and Mt compared to RH jumps which depend solely
on M. Our and others’ numerical data agree well with the theoretical predictions
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and we argued that while Rλ does not appear in the final expressions, this can be
justified from analysis of the governing equations in the one-dimensional limit. The
effect of anisotropy on the incoming turbulence was found to be negligible on mean
jumps, again supporting the basic tenets behind QE. The analytical results apply well
both in the wrinkled and broken regime due to the different treatment of supersonic
and subsonic regions ahead of the shock. Interestingly, though, departures from RH
jumps of mean variables are seen even in the wrinkled regime due to the nonlinear
functional form of RH jumps which, when averaged, result in values different than
RH jumps using mean properties ahead of the shock. Note that this effect is missing
when linearized RH jumps are used in theories such as LIA. Furthermore, in the
latter, mean properties are considered known boundary conditions to the problem at
the mean Mach number M. Our results, consistent with other DNS in the literature, do
not support this assumption which may be, in part, responsible for LIA being unable
to capture the observed behaviour beyond weak fluctuations. This change in mean
properties has also relevance for practical applications where shock stabilization in a
turbulent environment is critical such as flows in supersonic nozzles or in scramjet
engines. It can also provide guidance in designing stationary STI experiments and
simulations as an incorrect back pressure will lead to drifting shocks.

The theoretical results were further found to provide quantitative predictive
capabilities. For example, we found that turbulence can weaken (as argued before) but
also strengthen jumps depending on a critical Mach number Mcr defined here which
in turns depend on the intensity of turbulent fluctuations through Mt. For M < Mcr,
jumps are stronger than in laminar flows at the same M; for M > Mcr jumps are
weaker. Furthermore, density, pressure and temperature present different critical Mach
numbers giving raise to conditions in which temperature jumps are larger than RH
while density and pressure jumps are weaker than RH. These predictions have been
verified with DNS data.

Thus we conclude that collectively the data support QE as a good approximation
which leads to analytical results for density, pressure, temperature and entropy,
consistent with the available data. In fact, it is interesting to observe how well it
performs even with highly broken shocks where three-dimensional effects could play
a role. We also note that QE is not expected to be accurate for variables at locations
beyond x2′ where turbulent – as opposed to shock – processes dominate the dynamics.
It is also unclear whether derivations under QE are applicable to, e.g. variances of
thermodynamic quantities. This is part of ongoing efforts.

The effect of turbulence on the shock structure was quantified with the r.m.s.-to-
mean dilatation at the shock, Θ , suggested previously in the literature. Under QE, Θ
is found to depend, in the wrinkled regime, on the non-dimensional group Mt/1M
where the theory agrees well with the present DNS as well as other DNS in the
literature. Departures from the theory are seen for Mt/1M & 0.6 where stronger
turbulent effects create increasingly large areas with holes. At high Mt/1M, an
asymptotic value of Θ is observed which depends on the Reynolds number. This was
explained by the fact that at high turbulence intensities, dilatation fluctuations are
dominated by turbulent effects. Thus, classical results on turbulence gradients were
used to obtain Θ which agrees with DNS data.

Finally, we presented results on turbulence amplification due to the shock. The
focus was on G, the amplification factor of the streamwise velocity component.
A large collection of results, mainly from simulations, was presented. The new
simulations presented here cover a wide range of parameters and extended the
results in the literature to interactions at relatively high K. The large amount of data
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collected exhibit large departures from LIA which are found to depend systematically
on Mt and Rλ. Consistent with Donzis (2012a) new data exhibit a collapse on a
single curve when plotted against K for high K. However, as pointed out in Ryu &
Livescu (2014) at low K, the asymptotic behaviour depends on M, consistent with
LIA. This dependence on two parameters in two different limits resembles Widom
scaling in critical phenomena. Here, its application leads to universality of the form
GK1/4

= f2(K3/21M) which collapses all the data with no systematic trend observed in
any other governing parameter. This led to a transition criterion (Ktr ≈ 0.03/1M2/3)
between low-K and high-K interactions which separates interactions where LIA
applies and when G ∼ K−1/4 applies, respectively. The successful characterization
of departures from LIA, provides an opportunity for generalizations of LIA and
other theories, which can now use the correct scaling behaviour presented here as
a constraint. Modifications would likely be required to generalize results here to
more complex geometries such as shock–boundary layer interactions, but are of clear
interest.

In summary, the canonical interaction of a normal shock with high-intensity
turbulence was studied theoretically and numerically. A theory was proposed which
captures turbulence effects on jumps across the shock as well as the structure of the
shock surface. The theory also predicts new regimes of the interaction (e.g. vanished
regime, attenuation or amplification of mean jumps) which are supported quantitatively
by numerical data. Finally, new universal scaling laws were proposed for amplification
factors which collapse all available data and establish flow conditions for which known
theoretical limits should apply.
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Appendix A
In this appendix we provide the detailed derivations and complete expressions for

final forms not provided in the main section of the paper.
The leading orders of truncated integrals of m for a Gaussian distribution are given

in table 3.
Similar to density (3.6), the expressions for pressure and temperature are given by:

p1 =

[
γ − 1

2
(M +m)2 + 1

]−γ /(γ−1)

p01, (A 1a)

T1 =

[
γ − 1

2
(M +m)2 − 1

]−1

T01. (A 1b)

Under QE, thermodynamic variables downstream of the shock will be given by RH
expressions in supersonic regions:

p>2′ =
[

2γ
γ − 1

(M +m)2 −
γ − 1
γ + 1

][
γ − 1

2
(M +m)2

]−γ /(γ−1)

p01, (A 2a)
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〈m0
〉
>

1
2
+

1
2

erf

(√
3
2
1M
Mt

)
〈m〉>

Mt
√

6π
e−(3/2)(1M2/M2

t )

〈m2
〉
>

M2
t

6
−
1MMt
√

6π
e−(3/2)(1M2/M2

t ) +
M2

t

6
erf

(√
3
2
1M
Mt

)

〈m0
〉
<

1
2
−

1
2

erf

(√
3
2
1M
Mt

)
〈m〉< −

Mt
√

6π
e−(3/2)(1M2/M2

t )

〈m2
〉
<

M2
t

6
+
1MMt
√

6π
e−(3/2)(1M2/M2

t ) −
M2

t

6
erf

(√
3
2
1M
Mt

)
TABLE 3. Low-order moments of m for a Gaussian distribution

fm(m)= 1/Mt
√

3/2πe−(3m2/2M2
t ).

T>2′ =
[

2γ
γ + 1

((M +m)2 − 1)+ 1
][
(γ − 1)(M +m)2 + 2
(γ + 1)(M +m)2

][
γ − 1

2
(M +m)2 − 1

]−1

T01,

(A 2b)

while in subsonic regions we have p<2′ ≈ p1 and T<2′ ≈ T1.
These four expressions are now expanded around their respective mean as

q= q|m=0 +

(
∂q
∂m

)
m=0

m+
1
2

(
∂2q
∂m2

)
m=0

m2
+ · · · , (A 3)

where q= p1, p>2′ , T1 or T>2′ .
For upstream quantities (〈p1〉 and 〈T1〉) the averages are computed using complete

integrals against the p.d.f. of m. For downstream quantities (〈p2′〉 and 〈T2′〉) one needs
to split integrals as in (3.12) to distinguish subsonic from supersonic regions:

〈p1〉 =

∫
∞

−∞

p1 fm(m) dm, (A 4a)

〈p2′〉 =

∫
∞

−1M
p>2′ fm(m) dm+

∫
−1M

−∞

p1 fm(m) dm, (A 4b)

〈T1〉 =

∫
∞

−∞

T1 fm(m) dm, (A 4c)

〈T2′〉 =

∫
∞

−1M
T>2′ fm(m) dm+

∫
−1M

−∞

T1 fm(m) dm. (A 4d)

Upon integration aided by the forms in table 3, the final expressions of mean
pressure and temperature are

〈p1〉 =M−γ /(γ−1)p01 +
γ

12
M(−3γ+2)/(γ−1)

[(3γ − 1)M2
− 2]p01M2

t , (A 5a)
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〈p2′〉 =

[
2γ
γ + 1

M2
−
γ − 1
γ + 1

]
M−γ /(γ−1)p01〈m0

〉
>

+
γM
γ + 1

(−2M2
+ γ + 3)M(−2γ+1)/(γ−1)p01〈m〉>

+
γ

4(γ + 1)
M(−3γ+2)/(γ−1)

×[(2γ + 2)M4
− (3γ 2

+ 8γ + 9)M2
+ (2γ + 6)]p01〈m2

〉
>

+M−γ /(γ−1)p01〈m0
〉
<
− γMM(−2γ+1)/(γ−1)p01〈m〉<

+
γ

4
M(−3γ+2)/(γ−1)

[(3γ − 1)M2
− 2]p01〈m2

〉
<, (A 5b)

〈T1〉 =M−1T01 +
γ − 1

12
M−3
[(3γ − 3)M2

− 2]T01M2
t , (A 5c)

〈T2′〉 =

[
2γ
γ + 1

(M2
− 1)+ 1

] [
(γ − 1)M2

+ 2
(γ + 1)M2

]
M−1T01〈m0

〉
>

+
4(γ − 1)
(γ + 1)2M3

T01〈m〉> −
6(γ − 1)
(γ + 1)2M4

T01〈m2
〉
>

+M−1T01〈m0
〉
<
− (γ − 1)MM−2T01〈m〉<

+
γ − 1

4
M−3
[3(γ − 1)M2

− 2]T01〈m2
〉
<, (A 5d)

where, as in the main text, we have defined M = (γ − 1)M2/2 + 1 for convenience.
The ratio of the corresponding expressions yield the expressions denoted in (3.15) and
(3.16).

A similar procedure is followed to obtain the entropy jump (3.19). In terms of
supersonic and subsonic regions we write

〈1s〉=Cp(〈ln T2′〉
>
−〈ln T1〉

>)−R(〈ln p2′〉
>
−〈ln p1〉

>)+αsCp(γ − 1)2M4
t 〈m

0
〉
<, (A 6)

which requires the evaluation of 〈ln T1〉 (as in (3.21)), 〈ln T2′〉, 〈ln p1〉 and 〈ln p2′〉.
Again using QE, the logarithm of pressure and temperature can be expanded in Taylor
series and integrated in the appropriate probability space to obtain

〈ln p1〉
>
= ln(M−γ /(γ−1))〈m0

〉
>
−

2γM
(γ − 1)M2 + 2

〈m〉>

+
γ

4
[(γ − 1)M2

− 2]M−2
〈m2
〉
>
+ ln p01〈m0

〉
>, (A 7a)

〈ln p2′〉
>
= ln

([
2γ
γ + 1

M2
−
γ − 1
γ + 1

]
M−γ /(γ−1)

)
〈m0
〉
>

+
γM(−2M2

+ γ + 3)
2γM2 − γ + 1

M−1
〈m〉>

+ γ

[
−M−2

+
M−1

2
+

4− 4γ(
−2γM2 + γ − 1

)2 −
2(

2γM2 − γ + 1
)] 〈m2

〉
>

+ ln p01〈m0
〉
>, (A 7b)
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〈ln T2′〉
>
= ln

([
2γ
γ + 1

(M2
− 1)+ 1

] [
(γ − 1)M2

+ 2
(γ + 1)M2

]
M−1

)
〈m0
〉
>

+
2(γ − 1)

2γM3 − γM +M
〈m〉> −

(γ − 1)[γ (6M2
− 1)+ 1]

(2γM3 − γM +M)2
〈m2
〉
>

+ ln T01〈m0
〉
>. (A 7c)

These expressions can be combined into (A 6) to obtain gs(M,Mt) in (3.23).
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