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The structure of a shock wave interacting with isotropic turbulence is investigated.
General principles of similarity scaling show that consistency with known physi-
cal limiting behavior requires incomplete similarity solutions where the governing
non-dimensional parameters, namely, the Reynolds, convective, and turbulent Mach
numbers (Rλ, M, and Mt, respectively), can be combined to reduce the number of sim-
ilarity parameters that describes the phenomenon. An important parameter is found to
be K = Mt/Rλ

1/2(M − 1) which is proportional to the ratio of laminar shock thickness
to the Kolmogorov length scale. The shock thickness under turbulent conditions, on
the other hand, is essentially a random variable. Under a quasi-equilibrium assump-
tion, shown to be valid when K2 � 1, analytical results are obtained for the first and
second moments of the turbulent shock thickness, velocity gradient, and dilatation at
the shock. It is shown that these quantities exhibit universal behavior in the parameter
K with corrections in Mt/(M − 1), for velocity fields with arbitrary statistics. Ex-
cellent agreement is observed with available data from direct numerical simulations.
Two-point statistics of velocity gradients at the shock show that the distribution of
dilatation over the shock surface is determined by transverse structure functions of
the incoming turbulence. The regimes of the interaction are also investigated. It is
found that the appropriate parameter to delimit the different regimes is Mt/(M − 1).
Flow retardation ahead of the shock is suggested as a mechanism for so-called broken
shocks. C© 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4772064]

I. INTRODUCTION

In many engineering and natural systems, turbulent flows interact with shock waves. Classical
examples of such flows include supernovae explosions, supersonic aerodynamics and propulsion,
inertial confinement fusion, shock wave lithotripsy, and volcanic eruptions. Due to the tremendous
difficulties in understanding such complex flows, efforts have been directed to study the simplest
canonical cases, for example, the interaction of isotropic turbulence with a normal shock.

The first theoretical approaches1–3 idealized the problem as a linear one where the shock is
a discontinuity and the incoming flow was characterized by a single wave, or a superposition
of them. Within the theory, the characteristics of the waves after the shock can be computed
analytically. This theory which is based on a modal decomposition of the linearized Euler equations,
is commonly referred to as the linear interaction analysis (LIA). A particularly useful decomposition
of the incoming field is that of Kovasznay4 into vortical, acoustic, and entropy modes which evolve
independently to first order. Since then, a number of other theoretical approaches have been developed
to try to characterize and predict how a shock affects the evolution of velocity, vorticity, or other
quantities of interest.5–12 Except for rapid distortion theory (RDT), all other approaches treat the
shock as a discontinuity and are, therefore, unsuited to study the influence of the turbulence on the
internal structure of the shock. RDT, on the other hand, assumes that the shock has a finite width
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though it is decoupled from turbulence fluctuations and the assumption of homogeneity may not be
fully justified inside the shock.

Although LIA has had relative success over other approaches in predicting specific trends, evince
from experiments and simulations have consistently shown13 that characteristics of the turbulence not
accounted for in the theoretical work mentioned above such as length or velocity scales, can strongly
modify the outcome of the interaction. In light of this situation we have recently suggested14 that the
amplification of turbulence across the shock, for example, can be better understood as a function of
a non-dimensional parameter which is a combination of Reynolds, convective, and turbulent Mach
numbers and can be related to the ratio of shock thickness to Kolmogorov length scale.

It has also become increasingly clear that depending on the characteristics of the incoming flow,
the shock surface can preserve a well defined structure given by a steep gradient or can undergo
substantial deformations leading to “holes” across the shock where very smooth compressions or
multiple weak compression waves can occur.15, 16 These have been referred to as the “wrinkled” or
“broken” regimes, respectively, in the literature. It is natural to think that such a modification of the
structure of the shock could have a first order effect on the behavior of the interaction. Therefore,
it seems important to understand how the shock structure reacts to the incoming turbulence and
the role of this effect on the interaction. Quantitatively, there is particular interest in how important
characteristics of the shock scale with the governing non-dimensional parameters. This is our main
thrust here.

One of the problems faced while attempting to understand the interaction is the lack of a
suitable criterion of what delineates different regimes including the determination of what constitutes
asymptotic states. These are important when comparison with linear theories, for example, are
attempted. Without that rough guideline, we can come to varying conclusions from simulations
and experiments. While we have suggested such a guideline in Ref. 14, no quantitative information
about the shock structure was provided. In this paper we derive statistics of the shock thickness
and maximum velocity gradient at the shock as well as their spatial distribution across the shock
surface. In Sec. II, we use general principles of similarity scaling to show that similarity scaling
relations appear to be of the second kind (also known as incomplete similarity solutions)17 in
which dependence on some parameters will not disappear even when those parameters are large or
small. Analytical results pertaining the structure of the shock are obtained in Sec. III which agree
and support the analysis based on similarity scaling arguments. The important non-dimensional
parameter to characterize the shock is found to be the same as suggested in Ref. 14. The excellent
agreement between the theoretical predictions proposed here and the limited data available is shown
in Sec. IV. The structure of the shock surface and its relation with the incoming turbulence is
discussed in Sec. V. The results are then discussed in Sec. VI in the context of the regime of the
interaction. Conclusions are given in Sec. VII.

II. SHOCK STRUCTURE: SIMILARITY SCALING

Dimensional analysis and similarity scaling methods are powerful tools that have been useful
in understanding complex phenomena.17 The overall objective here is to determine the behavior of
the shock by using the knowledge about the state of the turbulence ahead of it. The essence of the
problem is sketched in Fig. 1. As a starting point, the turbulent field can be characterized by the
following dimensional parameters: a length scale such as the integral scale L, a turbulent velocity
scale such as the rms velocity u, the mean viscosity μ, the mean density ρ, and a temperature scale.
For a perfect gas, the temperature, T, is directly related to the speed of sound c = √

γ RT (where
γ is the ratio of specific heats and R the gas constant) which is commonly used in compressible
flows. While the mean upstream velocity U is an important parameter, the difference U − c is more
relevant for present purposes since the shock strength depends on the relative velocity instead of
the absolute value U. Although the thermal conductivity is an important parameter, it is not an
independent parameter if the the Prandtl number is assumed constant.

If the flow is laminar, the Mach number upstream of the shock, M = U/c, determines the
problem completely as all jump conditions can then be written in terms of M alone.18 When the
flow is turbulent, on the other hand, this is generally not possible.19 This makes simulations of
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FIG. 1. Flow configuration: A statistically stationary shock interacts with isotropic turbulence convected at a mean velocity
U and Mach number M = U/c where c is the mean speed of sound. The turbulence is characterized by a large length scale L, a
mean viscosity μ, and a mean density ρ. The fluctuating component of the velocity field is ũ (the corresponding instantaneous
Mach number is m̃ = ũ/c); its rms is denoted by u. The shock thickness δt is a random variable that depends on y, z, and
time.

stationary shocks more difficult since the boundary conditions necessary to maintain the mean
location of a shock fixed in space (in particular the outflow pressure) cannot be estimated accurately
in advance.16, 20 Still, the appropriate boundary conditions for a stationary shock are determined by
the characteristics of the incoming turbulent flow.

We thus find, for a stationary shock, the following functional form:

ϕ = f (L , u, μ, ρ, c, U − c), (1)

where ϕ is a quantity of physical interest such as the velocity or vorticity fluctuations downstream of
the shock, the thickness of the shock δ or other single-point statistics, and f is an unknown function.

Before we proceed further, a practical issue shall be clarified. Since the turbulence evolves
(decays) as it approaches the shock, a specific location has to be identified to obtain the governing
parameters in Eq. (1) in order to compare meaningfully geometrically similar flows. An obvious
and natural choice is to use values immediately upstream of the shock wave, a convention used
throughout the literature and hereafter.

Since there are six variables in Eq. (1) and only three with independent dimensions one can use
dimensional analysis and reduce the number of parameters describing the phenomenon to three. By
choosing μ, ρ, and c as the independent dimensions we find

ϕ∗ = �ϕ(Mt ,�M, Rc), (2)

where ϕ* is the non-dimensional version of ϕ, �ϕ is a universal function, and

Mt ≡
√

3
u

c
, �M ≡ U − c

c
, Rc ≡ cLρ

μ
. (3)

The factor
√

3 for Mt is included for consistency with the widely used definition Mt = √
ui ui/c

(summation implied). We note that the Reynolds number Rc is related to the most common RL

≡ uLρ/μ or the Taylor microscale Reynolds number Rλ = uλρ/μ (where λ is the Taylor microscale).
The different definitions are related through RL = MtRc ≈ Rλ

2. The parameter �M is usually written
in terms of the upstream Mach number M = U/c as �M = M − 1.

A. Laminar shock thickness: Incomplete similarity

After adopting a suitable definition for the shock thickness (to be made more precise below)
one can write Eq. (2) as ϕ* = δ/L = �δ(Mt, �M, Rc). Before considering the turbulent case, we
note that under laminar conditions (for which a subscript l will be used), the quantities L and u have
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no physical meaning. Therefore, dimensional analysis applied to Eq. (1) results in

δl = μ

ρc
�δl (�M). (4)

From physical considerations, as �M increases, the shock thickness is expected to decrease. Con-
versely, when �M tends to zero, δl increases. Therefore, since in principle, �δl does not approach
a finite non-zero asymptotic value for �M very large or small, its dependence cannot be neglected
a priori in either limit. If similarity is sought, only so-called incomplete similarity is possible and
the dependence on �M must appear explicitly.21 Assuming power-law asymptotics, we arrive at
δl = Cl(μ/ρc)�Mσ where Cl is a constant of order unity which will be dropped for simplicity, and
the exponent σ must be negative to satisfy the asymptotic behavior mentioned above. This result is
consistent with classical estimates using the Navier-Stokes equations18 which predict σ = −1:

δl ≈ μ

ρc

1

�M
. (5)

Thus, the well-known scaling of the (laminar) shock thickness that can be obtained analytically from
the governing equations, can also be derived using intermediate asymptotics as a case of incomplete
similarity. This is clearly an asymptotic expression expected to be valid for small values of �M.

It is often useful to compare the shock thickness with turbulent length scales. Since the shock
is typically thin compared to other flow scales, it is natural to compare δl with the smallest turbulent
scale, that is the Kolmogorov scale η = (ν3/〈ε〉)1/4 where 〈ε〉 is the mean energy dissipation rate
(angular brackets represent a suitably defined ensemble average). Within classical Kolmogorov22

phenomenology, the velocity field is locally uniform at sub-Kolmogorov scales. Therefore, the com-
parison between δl and η reflects whether the shock, locally, is subjected to a uniform velocity field
or its structure can interact with small-scale turbulence fluctuations. We will revisit this consideration
below. The normalized shock thickness can now be written as

δl

η
≈ K (6)

with K given by

K ≡ M3/4
t

R1/4
c �M

= Mt

Rλ
1/2�M

(7)

written in terms of both Rc and Rλ. The latter scaling was already suggested in Ref. 23 and appears
as an important parameter in other contexts.24 The parameter K has also been recently suggested14

to provide a universal description of amplification factors. With the help of Eq. (3) it is also possible
to rewrite Eq. (6) as

δl

η
= uη

U − c
, (8)

where uη = (〈ε〉ν)1/4 is the Kolmogorov velocity scale which emphasizes the importance of the ratio
of the characteristic velocity of the smallest turbulent scales and the relative velocity U − c. Thus
for K close to unity, the Kolmogorov length scale is comparable to the laminar shock thickness and
the Kolmogorov velocity scale is comparable to the mean velocity excess over sonic speeds. One
can also compare δl with the integral scale by using L ≈ ηRλ

3/2 = η(RcMt)3/4:

δl

L
≈ Mt

Rλ
2�M

. (9)

B. Turbulent shock thickness: Incomplete similarity

Let us consider now the turbulent case of Eq. (2):

〈δt 〉
η

= �δt (Mt ,�M, Rc), (10)
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where the subscript t stands for turbulent and angular brackets (representing a suitably defined
average) are explicitly written since the thickness is essentially a random variable in a turbulent flow
(Fig. 1). In simulations of shock-turbulence interactions, a sensible choice of averages is over planes
parallel to the shock surface.

Similar considerations to those for the laminar case apply here: for �M → 0 and �M → ∞, the
ratio 〈δt〉/η is expected to tend to ∞ and 0, respectively. Furthermore, if Rc → ∞ (e.g., in the limit
of vanishing viscosity) the normalized shock thickness will tend to zero since the Kolmogorov scale
decreases as μ3/4 (using the well-known property of dissipative anomaly25) while 〈δt〉 is expected to
behave (to first order) as μ. Conversely, we expect 〈δt〉/η → ∞ for Rc → 0. Again, the non-finite
asymptotic behavior suggests incomplete similarity, requiring retaining explicit dependence on these
two similarity parameters. Assuming power law behavior for both, we arrive at

〈δt 〉
η

= �Mα Rβ
c �δt

(
Mt

�Mα1 Rβ1
c

)
, (11)

where both α and β should be negative to be consistent with the limits mentioned above based on
physical considerations. These exponents as well as α1 and β1 cannot be determined by dimensional
arguments alone.

When the turbulent fluctuations are small, that is in the low-Mt limit, 〈δt〉/η is expected to tend
to Eq. (6). To ensure this, we set α = −1 and β = −1/4 and explicitly include26 a factor M3/4

t so
that the scaling function �δt is multiplied by K:

〈δt 〉
η

= K�δt

(
Mt

�Mα1 Rβ1
c

)
(12)

and require that �δt(x) → 1 as x → 0 thus assuring that 〈δt〉/η will tend to K when turbulence is
sufficiently weak.

Although similarity analysis does not provide a functional form for the normalized shock
thickness, it led to Eq. (12) which does constraint its form. In order to investigate the functional
form of �δt and whether this scaling is justified, we next turn to some analytical results on the shock
structure.

III. ANALYTICAL RESULTS FOR THE SHOCK STRUCTURE

As already mentioned, the shock thickness δt is a function of space and time. We now assume
that the internal structure of the shock is not modified by the turbulence and thus, locally, the
thickness is given by the laminar solution. At each point, however, the fluctuating velocity (Mach
number) is different and given by M + m̃ where m̃ = ũ/c and ˜ stands for instantaneous fluctuations
which depend on space and time (see Fig. 1). The normalized local shock thickness, δ∗

t , then, is
given by

δ∗
t ≡ δt

ρc

μ
≈ 1

�M + m̃
(13)

as a result of Eq. (5) which is, then, also valid for relatively low Mach numbers. It is thus expected
that in regions of high �M + m̃, Eq. (13) will not be accurate. In particular, we expect thinner
shocks than observed in experiments.27

If fm̃(m̃), the probability density function (PDF) of m̃, is known, one can in principle obtain
the PDF of δ∗

t , fδ∗
t
(δ∗

t ). A similar approach based on a weak-shock approximation has been used in
Ref. 24 though the interest in that reference was in shocklets statistics in decaying isotropic turbulence
in which case �M refers to the increment above unity of the shock Mach number measured in a
shock-fixed frame of reference. In particular, their model is based on the strong assumption that
jumps across the randomly distributed shocklets are the same as elsewhere in the flow. Such an
assumption is not needed to obtain shock statistics in the present flow configuration and, as seen
below, lead to different results.
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Clearly, within the present model, avoiding negative thicknesses requires |m̃| < �M—in other
words, the PDF of m̃ has to have bounded support. A further requirement is that the PDF be
symmetric if isotropy is assumed for the incoming turbulence.

Before proceeding further, it is important to assess whether Eq. (13) is able to faithfully capture
the unsteady physics of the interaction. This will depend on whether the shock can adjust to new
conditions at a faster time scale than all other time scales in the problem. In such a case, the
shock is in equilibrium with instantaneous local conditions, and will, therefore, be referred to as
a quasi-equilibrium assumption. Intuitively, this seems to be justified when changes occur over
long time scales.28 A formal investigation on the conditions under which the approximation is
valid is developed in Appendix A. The main result is that quasi-equilibrium is appropriate when
Kt � 1, where Kt is ratio of the shock time scale to the most disruptive turbulent perturbations.
Since, as also shown in Appendix A, Kt ≈ K2 when �M is not too small, the condition for quasi-
equilibrium is met when K2 � 1, which is satisfied for most simulations and experiments in the
literature.

A further comment is in order. In Eq. (13), m̃ was identified with the turbulent fluctuations of
the incoming turbulence. However, the Mach number in Eq. (5) is based on the relative velocity
between the flow and the shock wave. Thus, m̃ would contain contributions from both the turbulence
and the shock motion. While not strictly necessary for the derivations that follow, we will assume,
for simplicity in interpretation, that turbulent fluctuations are the dominant contributor. This may be
further justified if the quasi-equilibrium assumption is satisfied, as the shock will quickly adjust to
local conditions.

A. PDF and moments of shock thickness

Consider a velocity field characterized by a uniform distribution of the form

fm̃(m̃) =
⎧⎨
⎩

1/(2m1) |m̃| ≤ m1

0 otherwise
, (14)

where m1 is the maximum value m̃ can take. The turbulent Mach number Mt is then (see Eq. (3))

Mt =
√

3

(∫
m̃2 fm̃(m̃)dm̃

)1/2

, (15)

which in the present case results in Mt = m1. Using standard tools of probability,29 it is easy to show
from Eqs. (13) and (14), that

fδ∗
t
(δ∗

t ) =
{

1
2δ∗

t
2 Mt

(�M + Mt )−1 ≤ δ∗
t ≤ (�M − Mt )−1

0 otherwise
. (16)

Both fm̃(m̃) and fδ∗
t
(δ∗

t ) are shown in Fig. 2. It can be seen that a wide range of values of δt (even
wider than for ũ), around what is usually considered the nominal shock thickness given by Eq. (5),
results from the interaction.

To compare the predictions of this model with the similarity analysis leading to Eq. (12), we
can now use fδ∗

t
(δ∗

t ) to compute the normalized mean shock thickness as

〈δ∗
t 〉 =

∫
δ∗

t fδ∗
t
(δ∗

t )dδ∗
t = tanh−1(Mt/�M)/Mt . (17)

The (unnormalized) mean shock thickness 〈δt 〉 = 〈δ∗
t 〉μ/ρc can now be compared to the Kolmogorov

length scale (η ≈ L R−3/4
L ). The result is

〈δt 〉
η

= 1

M1/4
t R1/4

c

tanh−1(Mt/�M). (18)
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FIG. 2. (a) Model PDFs for velocity fluctuations upstream of the shock, fm̃ (m̃). Dashed and solid lines: uniform and
Beta(α,β) distributions (α = β = 2), respectively. (b) Resulting PDFs for normalized shock thickness δ∗

t = δt ρc/μ. Vertical
dash-dotted line: nominal laminar shock thickness δ∗

t = 1/�M . For both PDFs, m1 = 0.3 and �M = 0.4.

Finally, a Taylor series expansion in Mt results in

〈δt 〉
η

= M3/4
t

�M R1/4
c

+ M11/4
t

3�M3 R1/4
c

+ M19/4
t

5�M5 R1/4
c

+ . . .

= K

[
1 + 1

3

M2
t

�M2
+ 1

5

M4
t

�M4
+ 1

7

M6
t

�M6
+ . . .

]
. (19)

Clearly this expression agrees with the scaling of Eq. (12) derived from similarity scaling reasoning.
The resulting scaling function is �δt = 1 + (1/3)(Mt/�M)2 + (1/5)(Mt/�M)4 + . . . . This result, thus,
supports incomplete similarity in �M and Rc assumed in Sec. II B. A direct comparison between
Eqs. (19) and (12) reveals α1 = 1 and β1 = 0.

While the mean value provides important information, further understanding of the structure of
the shock can be gained by studying higher-order moments. For example, the second-order moment
is 〈δ∗

t
2〉 = ∫

δ∗
t

2 fδ∗
t
(δ∗

t )dδ∗
t , which, for the model in Eq. (14), yields 〈δ∗

t
2〉 = (�M2 − M2

t )−1. If, as
before, we normalize it by Kolmogorov length scale and expand the result as a series in Mt, we
obtain

〈δ2
t 〉

η2
= K 2

[
1 + M2

t

�M2
+ M4

t

�M4
+ M6

t

�M6
+ . . .

]
. (20)

In addition to the PDF model in Eq. (14), we have investigated the behavior of the turbulent
shock thickness for velocity fields characterized by different PDFs, including distributed Dirac
deltas, triangular and Betas distributions, and a truncated Gaussian (to satisfy the bounded support
constraint). The particular case of a Beta distribution B(α, β) with parameters α = β = 2 in the
interval [−m1, m1], is treated in Appendix B and the results included also in Fig. 2 to highlight that,
as expected, the shape of the PDF of δ∗

t depends on the particular fm̃(m̃) adopted. However, the
mean turbulent thickness presents the following scaling for all PDFs:

〈δt 〉
η

= K

[
1 + a1

M2
t

�M2
+ a2

M4
t

�M4
+ a3

M6
t

�M6
+ . . .

]
, (21)

where a1 = 1/3 and the numerical value of the coefficients a2, a3, . . . depend on the particular form
of fm̃(m̃) (compare Eqs. (19) and (B3)). All PDFs also show second-order moments that present the
following scaling with the governing parameters:

〈δ2
t 〉

η2
= K 2

[
1 + b1

M2
t

�M2
+ b2

M4
t

�M4
+ b3

M6
t

�M6
+ . . .

]
, (22)

where b1 = 1 and the rest of the coefficients depend on fm̃(m̃). As we show next, the universal
scaling of the shock thickness (in the sense of being the same for all velocity fields) is the result of
the functional form relating m̃ and δ∗

t in Eq. (13). This can be seen if the mean of δ∗
t is written in
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terms of the PDF of m̃,

〈δ∗
t 〉 =

∫
g(m̃) fm̃(m̃)dm̃, (23)

where g(m̃) = δ∗
t = 1/(�M + m̃). If g(m̃) is expanded as a Taylor series around the mean 〈m̃〉 (which

is zero in our case), the result is g(m̃) = g(〈m̃〉) + g′(〈m̃〉)(m̃ − 〈m̃〉) + g′′(〈m̃〉)(m̃ − 〈m̃〉)2/2 + . . .

(prime stands for derivative). When this expression is substituted into Eq. (23), upon integration,
the second term on the right-hand-side vanishes by definition of the mean and the third term
results in the variance of m̃, which is equal to M2

t /3 according to Eq. (15). Furthermore, since
g′′(〈m̃〉) = 2/(�M)3, we find to leading order

〈δ∗
t 〉 = g(〈m̃〉) + g′′(〈m̃〉)M2

t /6 + . . .

= 1

�M
+ 1

3

M2
t

�M3
+ . . . , (24)

which, when normalized by Kolmogorov scale, can be written as

〈δt 〉
η

= K

[
1 + 1

3

M2
t

�M2
+ . . .

]
(25)

a scaling in agreement with the results for different velocity fields and the similarity scaling analysis
in Eq. (12). Thus, we have shown that regardless of the particular shape of the PDF of the incoming
velocity field, to leading order, the mean shock thickness is given by Eq. (25).

Equation (25) (or (21)) provides some insight into the effect of turbulence on the shock thickness.
First, it suggests that, to leading order, the normalized turbulent thickness is the same as the
normalized laminar thickness (i.e., K). Second, for larger turbulent Mach numbers, the shock thickens
relative to the Kolmogorov length scale with the parameter Mt/�M independent of the Reynolds
number. Third, because the first coefficient of the expansion in Eq. (21) is known for all velocity
fields, it is possible to quantify how small turbulent fluctuations must be in order for 〈δt〉 to remain
within some fraction of the laminar solution (i.e., M2

t /�M2/3 can be bound to some fraction of
unity).

A similar analysis can be carried for the second-order moment of the shock thickness 〈δ2
t 〉. In

this case

〈δ∗
t

2〉 =
∫

g(m̃)2 fm̃(m̃)dm̃. (26)

We now expand g(m̃)2 around 〈m̃〉 and insert the resulting expression into Eq. (26), to obtain

〈δ∗
t

2〉 = g(〈m̃〉)2 + [g′(〈m̃〉)2 + g(〈m̃〉)g′′(〈m̃〉)]M2
t /3 + . . . .

= 1

�M2
+ M2

t

�M4
+ . . . . (27)

After normalizing by η2, we can finally write

〈δ2
t 〉

η2
= K 2

[
1 + M2

t

�M2
+ . . .

]
, (28)

which is in agreement with Eq. (22).
Equations (25) and (28) show that, to leading order the behavior of the turbulent shock thickness

is independent of the specific PDF of the incoming flow, as long as the second order moment (i.e.,
Mt) is the same. The same universal behavior is observed for the variance of the shock thickness
which follows from previous results and the equality σ 2

δt
= 〈δ2

t 〉 − 〈δt 〉2,

σ 2
δt

η2
= K 2

[
1

3

M2
t

�M2
+ . . .

]
, (29)

showing that while the mean turbulent shock thickness increases with K in the low-Mt limit, the
distribution around that mean, widens in proportion to M2

t /�M2, a result consistent with qualitative
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observations16 as shown below. We can further compute the rms-to-mean ratio � ≡ σδt /〈δt 〉 with
the help of Eqs. (25) and (29):

� = d1
Mt

�M
+ d2

M3
t

�M3
+ . . . , (30)

where d1 = 1/
√

3 and d2 depends on the PDF of the incoming turbulence.
It is interesting to note that while moments of the shock thickness normalized by the Kolmogorov

scale in our flow configuration depend on Reynolds and Mach numbers, Ref. 24 suggests that the
statistics of shocklet thicknesses in isotropic turbulence do not. For example, the most probable
shock thickness was found to be a constant when normalized by the mean Kolmogorov length scale.
In the present case, on the other hand, not only it depends on Rλ, Mt and �M (see, e.g., Eq. (25))
but also on the PDF of the incoming flow (see, e.g., Fig. 2 and Appendix B), As mentioned above,
in addition to the absence of a mean flow, a strong assumption in Ref. 24 is that the velocity jumps
across shocklets is the same as velocity increments everywhere, whose PDF is further assumed to
be independent of Mt.

IV. SHOCK STRUCTURE: DATA FROM NUMERICAL SIMULATIONS

To assess the predictions in Secs. II– III, one would need to compare the various expressions with
shock-resolving direct numerical simulations (DNS) or experiments where the details of the shock
structure are accurately resolved. Unfortunately, there is very scarce information of the structure
of the shock in turbulent flows due to well-known resolution constraints in both experiments13 and
simulations.30 The limited data comes exclusively from simulations where obtaining statistics inside
the shock is, in principle, no more difficult than in other regions as long as the shock is resolved by the
computational grid. Yet, resolving the shock in a simulation may be prohibitively computationally
expensive and studies have either chosen ranges of parameters that lead to a relatively thick shock
(e.g., low M and low Rλ) or used shock-capturing schemes which do not resolve the shock completely.

Here we will consider the data from Refs. 16 and 31 which represent the two cases mentioned
above. The simulations in Ref. 16 cover a relatively wide range of turbulent and convective Mach
numbers using shock-capturing schemes which makes a clear definition of the structure of the shock
somewhat difficult.32 Since shocks are only numerically captured, these simulations may be referred
to as turbulence-resolving DNS. Data from Ref. 31, on the other hand, do resolve the shock but there
is only one combination of (low) Reynolds and Mach numbers. In addition, neither of them present
data for the shock thickness and inferences are to be made to compare with the results here.

In Ref. 16, the instantaneous dilatation at the shock (θ̃ , defined as the location where the
dilatation takes the greatest negative value) was calculated for a range of Mt and �M to estimate the
rms-to-mean ratio

� ≡ 〈(θ̃ − 〈θ̃〉)2〉1/2

〈θ̃〉 =
( 〈θ̃2〉

〈θ̃〉2
− 1

)1/2

, (31)

where angular brackets denote averages over the shock surface.
The quantity � has an important physical meaning. When this quantity is small, deviations

from the mean dilatation are small and one expects the shock to retain its identity across the
entire shock surface with a steep compression comparable to the laminar case of Eq. (6). For large
�, on the other hand, a range of thicknesses will be present making the shock less identifiable
with a singularity as it will comprise smooth or multiple compressions in increasingly large areas.
These two asymptotic cases are commonly referred to as the wrinkled and broken regimes of the
interaction, respectively15, 16 (Ref. 33 referred to these as “peaked” and “rounded” waves). While
in some previous studies the transition from these regimes was determined by visual inspection of
instantaneous pressure or density profiles, Ref. 14 suggested a transition governed by the parameter
K which has also appeared here naturally as an important similarity parameter determining the
behavior of the shock structure. As suggested below, though, another mechanism for broken shocks
results in a criterion based on a different parameter.
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FIG. 3. (a) Normalized rms of dilation at the shock from Ref. 16 at Rλ ≈ 40 (open symbols) and Ref. 31 at Rλ ≈ 5.5 (closed
symbol). (b) Same but as a function of the parameter Mt/�M. Dashed-dotted line: Eq. (35). Dashed line: best fit for Eq. (37)
with e1 = 0.502 and e2 = 0.114. Circles and squares: wrinkled and broken regimes, respectively, as defined in Ref. 16. Stars
correspond to the intermediate state between the two.

We stress that while data from the shock-resolving simulations in Ref. 15 offer a more reliable
representation of the shock, data from Ref. 16 present some challenges in interpretation due to the
use of a shock-capturing scheme where the shock is not actually resolved by the grid. Nevertheless,
the authors argued that in Eq. (31), the normalization of gradients by their mean value reduces, in
part, the dependence on grid spacing. In lack of more reliable data from shock-resolving simulations
we proceed, with this caveat, to compare our predictions with the data available.

In Fig. 3(a) we show � from Refs. 16 and 31 as a function of M2
t /(M2 − 1) which has been

previously suggested15 to be an indicator of the regime of the interaction. The different symbols in
the figure demark the different regimes as determined in Ref. 16. Despite the scatter, the data appear
to follow the expected trend: small and large values of � are related to the wrinkled and broken
regimes, respectively. However, we observe multiple values of � (even in different regimes) for a
given M2

t /(M2 − 1) which suggests that the latter may not be the appropriate parameter.
To compare with the results in Sec. III, we note that the shock thickness can be defined by

means of the maximum negative velocity gradient in the streamwise direction |∂u/∂x|max which will
be denoted by |ux,max| for short: δt ∼ [u]/|ux,max| where [u] is the velocity jump across the shock.
Since ux,max is the dominant component of the dilatation at the shock, instantaneously, we obtain
θ̃ ∼ [u]/δt . Therefore, by writing θ̃ ∼ [u]δ−1

t = [u](δ∗
t μ/ρc)−1 = [u](ρc/μ)(�M + m̃), we find

the mean of the dilatation at the shock as

〈θ̃〉 ≈
∫

[u]
ρc

μ
(�M + m̃) fm̃(m̃)dm̃. (32)

If the effects of fluctuations on [u] are neglected, to leading order, we find

〈θ̃〉 ≈ [u]
ρc

μ

∫
(�M + m̃) fm̃(m̃)dm̃ = [u]

ρc

μ
�M. (33)
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Similarly, the second-order moment results in

〈θ̃2〉 =
(

[u]
ρc

μ

)2 ∫
(�M + m̃)2 fm̃(m̃)dm̃ =

(
[u]

ρc

μ

)2 (
�M + M2

t

3

)
. (34)

Finally, substituting these results into Eq. (31) yields,

� ≈ 1√
3

Mt

�M
. (35)

This result is important because it suggests a new parameter on which � depends, namely, Mt/�M.
To test this we show, in Fig. 3(b), the data as a function of Mt/�M. Comparison with part (a) in the
figure, shows that the agreement is very satisfactory as all the data seem to collapse into a single
curve. The figure also includes Eq. (35) (dashed-dotted line) which represents the data well even
though departures are observed at high Mt/�M. This, however, is not surprising. Since changes in
[u] were neglected, this expression is to be taken as a first-order approximation and can be expected
to hold only for relatively small values of Mt/�M.

We note that departures at higher Mach numbers may also be expected due to the use of the
weak-shock approximation Eq. (13). However, a quantity like � may be less sensitive to this than
unnormalized quantities (such as 〈δt〉 or 〈δ2

t 〉) since both the numerator and denominator in Eq. (31)
may be affected in similar ways.

A more general approach is to use the actual analytical solution for the maximum negative
gradient at the shock. Classical laminar calculations18 show that

ux,max = k1[u]2, (36)

where k1 = −(γ + 1)/8D, D = (μ/ρ)(4/3 + μv/μ + (γ − 1)/Pr ), μv is the bulk viscosity, Pr is
the Prandtl number and, within our set of assumptions, the instantaneous velocity jump is given
by [u] = −2c/(γ + 1)[(�M + 1 + m̃) − 1/(�M + 1 + m̃)]. The statistical moments of ux,max can
now be estimated following the procedures used above. That is, with Eq. (36) and the PDF of m̃,
we can compute 〈ux,max〉 and 〈u2

x,max 〉, then expand in series around the mean to finally approximate
� ≈ (〈u2

x,max 〉/〈ux,max 〉2 − 1)1/2 as

� ≈ e1
Mt

�M
+ e2

M3
t

�M3
+ · · · , (37)

where e1 = 1/
√

3 consistent with Eq. (35). Equation (37), however, provides the next term of the
expansion.

To test this result, Fig. 3(b) also shows a best fit of the form of Eq. (37) as a solid line with
coefficients e1 ≈ 0.502 and e2 ≈ 0.114. We note that the best-fit value of the linear coefficient e1 is
close to the analytical value of 1/

√
3 found in our analysis. Equation (37) clearly provides a better

representation of the data for a wider ranger of Mt/�M.
The scaling of � with Mt/�M can also be intuitively understood on physical grounds. If � = 0

(which means a single value of the maximum velocity gradient for the entire shock) we expect �

= 0 (which means a single value of the thickness). More generally, when the PDF of δt widens, so
does the PDF of θ̃ . Thus one can expect, � = ��(�) where �� is an unknown function. Since �

is a function of Mt/�M we thus have � ≈ �∗
�(Mt/�M). Furthermore, comparing Eq. (37) with

Eq. (30) suggests that the function �� is simply a multiplicative factor, i.e., � ≈ k2� where k2 is a
constant which is close to unity.

We close this section by stressing that even though good agreement is seen between theoretical
predictions and numerical data, most of the latter comes from shock-capturing simulations. Thus,
while agreement is also seen for shock-resolving simulations (Fig. 3), a more definite conclusion
in this regard must await comparison with fully resolved simulations at a wider range of Mach and
Reynolds numbers, not yet available in the literature.
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V. STRUCTURE OF SHOCK SURFACE

The results from Secs. II– IV dealt with single-point moments of the shock thickness and
velocity gradients when the incoming turbulence is characterized by single-point statistics only. In
other words, the turbulence has no spatial structure. In this section we extend the results to two-point
statistics capturing some of the structural characteristics of the incoming turbulence. Let us consider
again Eq. (13) but in the following form:

m̃ = δ∗
t
−1 − �M. (38)

A similar equation can be written at a different location over the shock (denoted with primes) which
can be subtracted from Eq. (38):

m̃ − m̃ ′ = δ∗
t
−1 − δ∗

t
′−1

. (39)

Squaring both sides and taking plane averages yields

DT
u (r)/c2 = Dw(r)μ2/ρ2c2, (40)

where DT
u (r) ≡ 〈(ũ − ũ′)2〉 is identified as a transverse second-order structure function since the

separation vector r (which lies on a plane parallel to the shock) is normal to the velocity component
ũ. The function Dw(r) is defined similarly as Dw(r) ≡ 〈(w − w′)2〉 where, for simplicity, we set
w ≡ 1/δt . Just as DT

u (r ) provides information about the structure of the incoming turbulence (in-
cluding spectral content), the structure function of w provides a sense of the spatial structure of the
shock surface. Furthermore, Dw(r ) provides information also about the maximum negative gradient
and dilatation at the shock since w = 1/δt ∼ |ux,max | ∼ θ̃ when the velocity jump [u] is considered
unaffected by turbulent fluctuations (see Sec. IV).

If the upstream turbulence is isotropic (or axisymmetric) the direction of r is irrelevant (as long
as it is parallel to the shock surface) and structure functions will depend on r = |r| only. We then
write Eq. (40) as Dw(r ) = ρ2/μ2 DT

u (r ) which provides a link between the structure of the shock
surface and the turbulence ahead of it.

According to the classical phenomenology of Kolmogorov22 the normalized structure func-
tion DT

u (r )/u2
η = h(r/η) is a universal function of r/η. If corrections due to intermittency and the

bottleneck effect34 are neglected, we can then rewrite Eq. (40) as

Dw(r/η)η2 = h(r/η). (41)

The scaling of h(r/η) is relatively well understood. For small separations transverse velocity incre-
ments can be represented by a Taylor series which to first order yields h(r/η) = (2/15)(r/η)2. At
larger scales but still smaller than the integral length scales (the inertial range), Kolmogorov scaling
(K41) predicts h(r/η) = cT

K (r/η)2/3. Finally, at the largest separations, the correlation between the
velocity at two points vanishes and h(r/η) approaches a constant value of 2u2/u2

η. We thus have

Dw(r/η)η2 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(2/15)(r/η)2 r � η

cT
K (r/η)2/3 η � r � L

2u2/u2
η L � r

. (42)

At very high Reynolds numbers, a wide inertial range develops where the r2/3 scaling corresponds
to k−5/3 in spectral space.35 Therefore, the distribution of thicknesses (and peak dilatation at the shock)
will be characterized by a k−5/3 scaling in wavenumber space. At moderate Reynolds numbers,
however, the inertial range is very narrow. Moreover, the asymptotic inertial-range scaling for the
transverse spectrum (which is the one related to the spatial structure of the shock surface) may
require higher Reynolds numbers than for the longitudinal counterpart.36

Related to the structure function is the auto-correlation function defined as Rw(r )
= 〈(w − 〈w〉)(w′ − 〈w′〉)〉/σ 2

w = (〈ww′〉 − 〈w〉2)/σ 2
w, where σ 2

w = 〈(w − 〈w〉)2〉 = 〈w2〉 − 〈w〉2 is
the variance of w (as well as of w′ due to homogeneity in the two transverse directions). It is then
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relatively easy to show that

Rw(r ) ≈ RT
u (r ), (43)

where RT
u (r ) is the transverse correlation function for the streamwise velocity component. An

important implication of this result is that the integral length scales of the shock and the turbulence
(which are the integral of the respective correlation functions) are commensurate. We point out,
however, that behind the shock, information propagating at the speed of sound can create long-range
correlations which are not accounted for in the present analysis. Therefore, larger integral length
scales cannot be ruled out.

VI. REGIME OF THE INTERACTION

As mentioned in Sec. I, it has been recognized that the interaction could be in different regimes
depending on whether the shock remains a sharp gradient across the entire surface or it is greatly
distorted leading to smooth compressions or multiple compression waves along individual stream-
lines. These have been referred to as wrinkled and broken (or peaked and rounded) regimes,16, 33

respectively. Since their definition has been typically based on visual inspections of instantaneous
contours of pressure or density, in Ref. 14 we have suggested that the parameter K can be used to
quantitatively assess some of the characteristics of the interaction: low-K interactions correspond to
well-defined fronts while high-K interactions correspond to more distorted shocks. The transition,
however, was found to be smooth for amplification factors of streamwise velocity components (Gu2 )
with a scaling of the form Gu2 ∼ 0.75K −1/4 and a specific value of K to delimit different regimes
would carry some degree of arbitrariness. Below, a different mechanism is proposed which results
in a transition that depends on Mt/�M instead.

Intuitively, holes may appear when velocity fluctuations are such that at some location the
local Mach number is less than unity. This possibility is consistent with observations16 that smooth
compressions appear to be correlated with retardation of the flow ahead of the shock. The conditions
necessary for this to happen can be estimated by considering that the velocity field at large scales
obeys Gaussian statistics which is, in fact, a good approximation.35 The probability of �M + m̃ < 0
(a locally subsonic flow) is then Ps ≡ P(m̃ < −�M) = (1 − erf(�M/

√
2σ ))/2 where erf(.) is the

error function and σ is the standard deviation of m̃ which can be written as σ = Mt/
√

3. Then,
Ps = [1 − erf(

√
3/2 1

Mt /�M )]/2. For Mt/�M ≈ 0.6 (as taken from Fig. 3(b)) the probability of such
subsonic events is 0.0019. In other words, less than 0.2% of the surface will be subjected to subsonic
velocities. For the strongest case in the figure (largest Mt/�M) the probability is about 6%. It is
interesting to note that, as seen in Fig. 4, Ps is negligible when Mt/�M is less than 0.6 and increases
approximately linearly for larger values of Mt/�M. The change of behavior of Ps at Mt/�M about
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FIG. 4. Probability of flow being locally subsonic Ps = P(m̃ < −�M) for Gaussian upstream turbulence. Dashed line:
(1 − erf(

√
3/2))/2 + √

3/2π (Mt /�M − 1)/e3/2 which are the first terms in the Taylor expansion of Ps around Mt/�M = 1.
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0.6 agrees with the regimes as determined in Refs. 15 and 16. A similar result was recently suggested
independently.37

The results of this analysis, however, do not depend on the Reynolds number. This is the
consequence of assuming a Gaussian velocity field which has no associated length scales and
therefore, no structure. The agreement with the data may then suggest a kinematic mechanism for
broken shocks independent of Reynolds number.

We also note that for fixed Reynolds numbers, Mt/�M is proportional to K. If the alternative
interpretation of K given by Eq. (8) is used, it is easy to see that values of K of order unity (or
greater) corresponds to Kolmogorov velocities larger than the excess U − c. Because within K41
phenomenology, characteristic velocities decrease with scale, the situation K ∼ O(1) would imply
that the velocities associated with all scales are larger than U − c and massive subsonic regions
should be expected. The analysis above, on the other hand, establishes the boundary between regimes
based only on the most energetic scales. As K increases, smaller turbulent scales may be increasingly
responsible for creating subsonic regions.

We finally make a note about the generality of the preceding results. The estimate Eq. (13) is
strictly valid for small values of �M thus limiting, in principle, its applicability to weak shocks.
However, if the appearance of subsonic regions is the leading cause of broken regimes, then only
the local Mach number is important, and not the details of the shock structure. For local conditions
close to sonic, Eq. (13) will be the appropriate approximation. Thus, the appearance of a broken
regime based on locally subsonic regions is valid also for strong shocks.

VII. CONCLUSIONS

We have investigated the interaction of a shock wave with approximately isotropic turbulence.
The prevailing theoretical approach used to attempt to understand data from experiments and simula-
tions, is LIA which is formally valid in the high-Rc and low-Mt limits. From a similarity perspective,
this corresponds to complete similarity in both Reynolds and turbulent Mach numbers which are
further assumed to be sufficiently high and low, respectively. However, data from experiments and
simulations consistently show dependence on these two parameters.

Using general principles of similarity analysis, it was found that only incomplete similarity
solutions are consistent with known limiting behavior of the thickness of the shock. On this basis, the
well-known laminar estimation δl using the Navier-Stokes equations was re-derived using similarity
arguments. The ratio of laminar shock thickness to Kolmogorov scale was found to be δl/η = K
with K = Mt/Rλ

1/2�M. This ratio is also proportional to the ratio of Kolmogorov velocity scale, uη,
and the mean velocity excess U − c. For the turbulent case, the mean shock thickness was found
to posses also incomplete similarity in the governing parameters reducing the relevant parameters
from three to one. The physical importance of incomplete similarity is its implication that even if
some parameters are very small (e.g., Mt) or very large (e.g., Rc), they cannot be neglected a priori
and have to be accounted for to understand the different limiting behavior.17

Under the quasi-equilibrium assumption embodied in Eq. (13), which is shown to be valid
when Kt ≈ K2 � 1, a number of analytical results have been obtained. Different velocity fields,
characterized by different PDFs, result in different PDFs for shock thicknesses which present wider
fluctuations around the mean than the velocity field that generate those fluctuations. However,
the first two moments scale in a universal fashion as 〈δt〉/η ≈ K[1 + (1/3)(Mt/�M)2 + . . . ] and
〈δ2

t 〉/η2 ≈ K 2[1 + (Mt/�M)2 + . . .]. These results support the similarity scaling analysis presented
in Sec. II. Higher-order moments of the shock thickness, though, are likely to depend on high-order
statistics of the turbulence velocity field as well.

The rms-to-mean-ratio of the dilatation at the shock was found to be given by
� ≈ (1/

√
3)Mt/�M + . . . which agrees very well with DNS data for low values of Mt/�M. For

higher values, the next term in the expansion is found to be proportional to M3
t /�M3 which extends

the range of agreement to all data available. Thus, Mt/�M appears to be a better alternative to the
parameter M2

t /(M2 − 1) used in the literature.15, 16

The analysis has also been extended to two-point statistics which provides information about
the structure of the shock surface. The distribution of maximum gradients across the shock follows
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a k−5/3 scaling in the inertial range of scales of the incoming turbulence. Obviously much higher
Reynolds numbers that currently available are needed to discern a true inertial range. The integral
scale associated with thicknesses or velocity gradients across the shock surface appear to be of the
same order as the transverse integral length of turbulence though longer scales may be expected
from pressure waves in the downstream region.

A mechanism for “holes” observed in shocks in the so-called broken regime was proposed based
on locally subsonic regions. Results for a Gaussian velocity field, suggests a transition at Mt/�M
≈ 0.6 in agreement with Refs. 15 and 16. The determination of the precise mechanism leading to
broken shocks will likely require detailed high-fidelity shock-resolving simulations at a range of
values of �M, Mt, and Rλ not currently available.
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APPENDIX A: VALIDITY OF A QUASI-EQUILIBRIUM ASSUMPTION

Some results in Secs. III–V were based on the assumption that Eq. (13) is instantaneously
valid—that is, the assumption that the shock wave is in quasi-equilibrium with local conditions.
In principle, the validity of such a claim depends on how fast the shock can adjust to changing
conditions. Thus, we now provide conditions under which a quasi-equilibrium approximation is
valid.

Since the main mechanism for shock creation is the steepening process of non-linear inviscid
terms it seems reasonable to estimate the time scale of this process using an inviscid approximation.
For this, valuable information can be obtained by establishing how the velocity gradient evolves
from some initial perturbation as one follows the wave that is created. Since this problem is analyzed
in classical textbooks38 we only include the main results needed here.

The interest is in the evolution of the velocity gradient ux as ones follows the traveling wave,
that is [d(ux )/dt]wave. In a one-dimensional isentropic setup it can be shown38 that [d(ux )/dt]wave

= −(γ + 1)u2
x/2 whose solution from some t1 to t2 = t1 + �t is

ux (t2) = [ux (t1) + (γ + 1)�t/2]−1. (A1)

Clearly, if ux(t1) is negative, gradients will steepen until �t = 2/|ux(t1)|(γ + 1) where a discontinuity
appears. Alternatively, the time between any two states, can be easily obtained from Eq. (A1) as

�t = [2/(γ + 1)]
(
ux (t2)−1 − ux (t1)−1

)
. (A2)

For the problem of interest here, however, viscosity is not zero and gradients are limited by the
smoothing effect of viscous forces. We are, therefore, interested in the time taken between two states
determined by the competition between non-linear steepening and viscous effects. If we focus our
attention on the maximum negative gradient (i.e., ux = ux, max), then the initial and final states are
determined by Eq. (36). Let M and M + δM represent these two states. Then combining Eq. (36)
with Eq. (A2) yields

�t = (4D/c2)
[
(M − M−1)−2 − (M + δM − (M + δM)−1)−2

]
, (A3)

which, when expanded as a Taylor series in δM, and neglecting numerical prefactors, can be written
as

�t ≈ D

c2
g1(M)δM + O(δM2) (A4)

with g1(M) = M(1 + M2)/(M2 − 1)3. Equation (A4), thus, represents the time required for the shock
to relax from M to M + δM.
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Since turbulence is responsible for changes in the local Mach number, it is useful to relate δM to
the characteristics of the incoming flow. In particular, these changes in M are produced by changes in
the velocity over a streamwise distance r, that is u(x + r) − u(x), as turbulence is convected towards
the shock. We could now consider a typical fluctuation which will be of order

√
DL

u (r ) where DL
u (r )

is the second order longitudinal structure function. Therefore, we can estimate δM = √
DL

u (r )/c.
We now need to consider the time scale at which such a perturbation is introduced. If turbulence
is assumed to be swept by the mean flow at a mean velocity U, a perturbation δM = √

DL
u (r )/c is

convected through the shock in a time scale of order τ c ≈ r/U.
We now proceed to compare the relevant times scales. If the convective time scale τ c is much

longer than the time needed for the shock wave to adjust to new conditions—�t in Eq. (A4)—then
the quasi-equilibrium assumption leading to Eq. (13) is justified. In other words, quasi-equilibrium
is valid if

Kt � 1, (A5)

where

Kt ≡ �t

τc
≈ D

c2
g1(M)

√
DL

u (r )

c

U

r
. (A6)

Since Kt depends on r, one could identify the worst case scenario—where Kt is maximum—and
verify whether Eq. (A5) is satisfied. Clearly, the dependence on r is through

√
DL

u (r )/r . By studying
the longitudinal analogous to Eq. (42), it is possible to show that

√
DL

u (r )/r approaches a constant
equal to uη/η

√
15 = (〈ε〉/ν)1/2/

√
15 at the smallest scales which provides the most severe test for

Eq. (A5). We can then write

Kt ≈ D

c2
g1(M)M

1√
15

( 〈ε〉
ν

)1/2

≈ ν

c2
g2(M)

u

λ
, (A7)

where we have used the well-known relation 〈ε〉 ∼ νu2/λ2 and the approximation D∝μ/ρ = ν which
is valid for zero bulk viscosity (or constant μv/μ) and constant Prandtl number. We have also defined
g2(M) ≡ g1(M)M.

A functional form that provides a good approximation for g2(M) for a wide range of values of M
relevant to simulations15, 16, 31, 39–41 is 1/�M2. While the high-M asymptote is correctly represented
by this function some departures appear very close to M = 1 (�M = 0) where an actual discontinuity
grows with the third power of �M. Using this result into Eq. (A7) along with Eq. (7) and omitting
all order-one factors, yields,

Kt ≈ K 2. (A8)

We therefore find that the condition Kt � 1 (necessary for quasi-equilibrium) is satisfied when
K2 � 1 which, in turn, represents the situation where the laminar shock thickness is smaller than
the Kolmogorov length scale. It also corresponds to the case where the Kolmogorov velocity scale
is smaller than the velocity excess U − c (Eq. (8)). This is the case for all the data collected in
Ref. 14. We note, however, that for very small values of �M, another factor 1/�M reappears due to
the singularity at M = 1. Therefore we have Kt ≈ K2/�M for �M → 0.

In summary, we have obtained an estimation of the conditions necessary for a quasi-equilibrium
approximation—that is, the validity of Eq. (13) in an instantaneous basis—to hold. For this assump-
tion to be valid, the shock wave must be able to adjust to local conditions at a much shorter time
scale than those associated with the most disruptive turbulent perturbations. This is justified when
Kt ≈ K2 � 1 (for �M not too small).

APPENDIX B: INCOMING TURBULENCE WITH A BETA DISTRIBUTION

The incoming velocity field in Fig. 1 can be modeled with a Beta distribution B(α, β) with
parameters α = β = 2 in the interval [−m1, m1]. This PDF is shown in Fig. 2(a). In this case, the
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PDF of the normalized thickness is

fδ∗
t
(δ∗

t ) = (9/20)
√

3/5(5M2
t /3 − (1/δ∗

t − �M)2)/(δ∗
t

2 M3
t ) (B1)

for (�M + √
5/3Mt )−1 < δ∗

t < (�M − √
5/3Mt )−1, shown in Fig. 2(b). The mean value is then

〈δ∗
t 〉 =

[
3
√

15
(
5Mt

2 − 3�M2) tanh−1
(√

5/3Mt/�M
)

+ 45�M Mt

]
/(50Mt

3). (B2)

When normalized with Kolmogorov length scale and expanded in powers of Mt, the mean shock
thickness is given by

〈δt 〉
η

= K

[
1 + 1

3

M2
t

�M2
+ 5

21

M4
t

�M4
+ . . .

]
. (B3)

This form is essentially the same as Eq. (19) with slightly different coefficients. The second-order
moment and variance of δt for this model are

〈δ2
t 〉

η2
= K 2

[
1 + M2

t

�M2
+ 25

21

M4
t

�M4
+ . . .

]
,

σ 2
δt

η2
= K 2

[
1

3

M2
t

�M2
+ 38

63

M4
t

�M4
+ . . .

]
,

(B4)
which are also of the same form as those resulting from the previous model of Eq. (14), with small
difference in some of the coefficients. The most probable thickness normalized by Kolmogorov scale
can be found from Eq. (B1) to be (Mt

3/4(
√

9�M2 + 120Mt
2 − 9�M))/(2Rc

1/4
(
5Mt

2 − 3�M2
)
).

This maximum can be also identified in Fig. 2(b).

1 H. S. Ribner, “Shock-turbulence interaction and the generation of noise,” NACA Report TR-1233 (1954).
2 H. S. Ribner, “Convection of a pattern of vorticity through a shock wave,” NACA Report TR-1164 (1954).
3 F. K. Moore, “Unsteady oblique interaction of a shock wave with a plane disturbance,” NACA Report TR-1165 (1954).
4 L. S. G. Kovasznay, “Turbulence in supersonic flow,” J. Aeronaut. Sci. 20, 657–674 (1953).
5 C. Truesdell, “On curved shocks in steady plane flow of an ideal fluid,” J. Aeronaut. Sci. 19, 826–828 (1952).
6 M. J. Lighthill, “Dynamics of a dissociating gas. Part I. Equilibrium flow,” J. Fluid Mech. 2, 1–32 (1957).
7 W. D. Hayes, “The vorticity jump across a gasdynamic discontinuity,” J. Fluid Mech. 2, 595–600 (1957).
8 P. A. Durbin and O. Zeman, “Rapid distortion theory for homogeneous compressed turbulence with application to model-

ing,” J. Fluid Mech. 242, 349–370 (1992).
9 L. Jacquin, C. Cambon, and E. Blin, “Turbulence amplification by a shock wave and rapid distortion theory,” Phys. Fluids

5, 2539–2550 (1993).
10 G. P. Zank, Y. Zhou, W. H. Matthaeus, and W. K. M. Rice, “The interaction of turbulence with shock waves: A basic

model,” Phys. Fluids 14, 3766–3774 (2002).
11 X. Z. Ao, G. P. Zank, N. V. Pogorelov, and D. Shaikh, “Interaction of a thin shock with turbulence. I. Effect on shock

structure: Analytic model,” Phys. Fluids 20, 127102 (2008).
12 J. G. Wouchuk, C. H. R. de Lira, and A. L. Velikovich, “Analytical linear theory for the interaction of a planar shock wave

with an isotropic turbulent vorticity field,” Phys. Rev. E 79, 066315 (2009).
13 Y. Andreopoulos, J. H. Agui, and G. Briassulis, “Shock wave-turbulence interactions,” Annu. Rev. Fluid Mech. 32, 309–345

(2000).
14 D. A. Donzis, “Amplification factors in shock-turbulence interactions: Effect of shock thickness,” Phys. Fluids 24, 011705

(2012).
15 S. Lee, S. K. Lele, and P. Moin, “Direct numerical simulation of isotropic turbulence interacting with a weak shock wave,”

J. Fluid Mech. 251, 533–562 (1993).
16 J. Larsson and S. K. Lele, “Direct numerical simulation of canonical shock/turbulence interaction,” Phys. Fluids 21, 126101

(2009).
17 G. I. Barenblatt, Scaling (Cambridge University Press, Cambridge, 2003).
18 P. A. Thompson, Compressible Fluid Dynamics (McGraw Hill, New York, 1984).
19 S. K. Lele, “Compact finite-difference schemes with spectral-like resolution,” J. Comput. Phys. 103, 16–42 (1992).
20 N. Grube and M. P. Martin, “Numerical investigation of shock/isotropic turbulence interactions,” AIAA Paper No. 2011–

480 (2011).
21 G. I. Barenblatt and Y. B. Zeldovich, “Self-similar solutions as intermediate asymptotics,” Annu. Rev. Fluid Mech. 4,

285–312 (1972).
22 A. N. Kolmogorov, “Local structure of turbulence in an incompressible fluid for very large Reynolds numbers,” Dokl.

Akad. Nauk SSSR 30, 299–303 (1941).
23 P. Moin and K. Mahesh, “Direct numerical simulation: A tool in turbulence research,” Annu. Rev. Fluid Mech. 30, 539–578

(1998).
24 R. Samtaney, D. I. Pullin, and B. Kosovic, “Direct numerical simulation of decaying compressible turbulence and shocklet

statistics,” Phys. Fluids 13, 1415 (2001).
25 K. R. Sreenivasan, “An update on the energy dissipation rate in isotropic turbulence,” Phys. Fluids 10, 528–529 (1998).

Downloaded 07 Mar 2013 to 165.91.183.238. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions

http://dx.doi.org/10.2514/8.2793
http://dx.doi.org/10.2514/8.2495
http://dx.doi.org/10.1017/S0022112057000713
http://dx.doi.org/10.1017/S0022112057000403
http://dx.doi.org/10.1017/S0022112092002404
http://dx.doi.org/10.1063/1.858767
http://dx.doi.org/10.1063/1.1507772
http://dx.doi.org/10.1063/1.3041706
http://dx.doi.org/10.1103/PhysRevE.79.066315
http://dx.doi.org/10.1146/annurev.fluid.32.1.309
http://dx.doi.org/10.1063/1.3676449
http://dx.doi.org/10.1017/S0022112093003519
http://dx.doi.org/10.1063/1.3275856
http://dx.doi.org/10.1016/0021-9991(92)90324-R
http://dx.doi.org/10.1146/annurev.fl.04.010172.001441
http://dx.doi.org/10.1146/annurev.fluid.30.1.539
http://dx.doi.org/10.1063/1.1355682
http://dx.doi.org/10.1063/1.869575


126101-18 Diego A. Donzis Phys. Fluids 24, 126101 (2012)

26 This can be done by multiplying and dividing by M3/4
t and absorbing 1/M3/4

t into �δt. This step is justified if �δt consists
of sums of monomials, since the exponents α1 and β1 are still unspecified.

27 H. Alsmeyer, “Density profiles in argon and nitrogen shock waves measured by the absorption of an electron beam,”
J. Fluid Mech. 74, 497–513 (1976).

28 P. J. K. Bruce and H. Babinsky, “Unsteady shock wave dynamics,” J. Fluid Mech. 603, 463–473 (2008).
29 A. Papoulis and S. U. Pillai, Probability, Random Variables, and Stochastic Processes, 4th ed. (McGraw-Hill, 2002).
30 E. Johnsen, J. Larsson, A. V. Bhagatwala, W. H. Cabot, P. Moin, B. J. Olson, P. S. Rawat, S. K. Shankar, B. Sjögreen,
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